Analysis of the point spectrum of the Sturm-Liouville operator with certain behavior of potential at infinity
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2006), pp. 23-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the space $L^2 (R)$ the Sturm-Liouville operator $L$ with certain behavior of potential at infinity is considered. We prove that the eigenvalues of $ L$ are simple and are finite in number.
@article{UZERU_2006_1_a1,
     author = {H. A. Asatryan},
     title = {Analysis of the point spectrum of the {Sturm-Liouville} operator with certain behavior of potential at infinity},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {23--28},
     publisher = {mathdoc},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2006_1_a1/}
}
TY  - JOUR
AU  - H. A. Asatryan
TI  - Analysis of the point spectrum of the Sturm-Liouville operator with certain behavior of potential at infinity
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2006
SP  - 23
EP  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2006_1_a1/
LA  - ru
ID  - UZERU_2006_1_a1
ER  - 
%0 Journal Article
%A H. A. Asatryan
%T Analysis of the point spectrum of the Sturm-Liouville operator with certain behavior of potential at infinity
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2006
%P 23-28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2006_1_a1/
%G ru
%F UZERU_2006_1_a1
H. A. Asatryan. Analysis of the point spectrum of the Sturm-Liouville operator with certain behavior of potential at infinity. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2006), pp. 23-28. http://geodesic.mathdoc.fr/item/UZERU_2006_1_a1/

[1] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[2] A.G. Petrosyan, “Issledovanie tochechnogo spektra samosopryazhennogo differentsilnogo operatora s koeffitsientami, imeyushimi opredelennye povedeniya”, Uchenye zapiski EGU, 2003, no. 3, 8–15

[3] Amer. Math. Soc. Transl. Ser. 2, 65 (1967), 139–166 | MR | Zbl | Zbl

[4] V. A. Marchenko, Operatory Shturma-Diuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR