Analysis of the point spectrum of the Sturm-Liouville operator with certain behavior of potential at infinity
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2006), pp. 23-28
Cet article a éte moissonné depuis la source Math-Net.Ru
In the space $L^2 (R)$ the Sturm-Liouville operator $L$ with certain behavior of potential at infinity is considered. We prove that the eigenvalues of $ L$ are simple and are finite in number.
@article{UZERU_2006_1_a1,
author = {H. A. Asatryan},
title = {Analysis of the point spectrum of the {Sturm-Liouville} operator with certain behavior of potential at infinity},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {23--28},
year = {2006},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_2006_1_a1/}
}
TY - JOUR AU - H. A. Asatryan TI - Analysis of the point spectrum of the Sturm-Liouville operator with certain behavior of potential at infinity JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2006 SP - 23 EP - 28 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZERU_2006_1_a1/ LA - ru ID - UZERU_2006_1_a1 ER -
%0 Journal Article %A H. A. Asatryan %T Analysis of the point spectrum of the Sturm-Liouville operator with certain behavior of potential at infinity %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2006 %P 23-28 %N 1 %U http://geodesic.mathdoc.fr/item/UZERU_2006_1_a1/ %G ru %F UZERU_2006_1_a1
H. A. Asatryan. Analysis of the point spectrum of the Sturm-Liouville operator with certain behavior of potential at infinity. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2006), pp. 23-28. http://geodesic.mathdoc.fr/item/UZERU_2006_1_a1/
[1] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR
[2] A.G. Petrosyan, “Issledovanie tochechnogo spektra samosopryazhennogo differentsilnogo operatora s koeffitsientami, imeyushimi opredelennye povedeniya”, Uchenye zapiski EGU, 2003, no. 3, 8–15
[3] Amer. Math. Soc. Transl. Ser. 2, 65 (1967), 139–166 | MR | Zbl | Zbl
[4] V. A. Marchenko, Operatory Shturma-Diuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR