On weighted classes of entire functions in $\mathbb{C}^n$
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2006), pp. 17-22
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper the weighted classes $A^p_{\omega}(\mathbb{C}^n)$ of entire functions of several complex variables are introduced. These classes depend on parameter-function $\omega(х)$ and they are arbitrarily large. For functions belonging to $A^2_{\omega}(\mathbb{C}^n)$ the integral representation is obtained.
@article{UZERU_2006_1_a0,
author = {A. I. Petrosyan},
title = {On weighted classes of entire functions in $\mathbb{C}^n$},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {17--22},
year = {2006},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_2006_1_a0/}
}
A. I. Petrosyan. On weighted classes of entire functions in $\mathbb{C}^n$. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2006), pp. 17-22. http://geodesic.mathdoc.fr/item/UZERU_2006_1_a0/
[1] A. I. Petrosyan, “On $A^{p}_{\omega}$ Spaces in the Unit Ball of ${\mathbf C^n}$”, Journal of Analysis and Applications, 3:1 (2005), 47–53 | MR | Zbl
[2] M. M. Dzhrbashyan, DAN Armyanskoi SSR, 3:1 (1945), 3–9 | MR
[3] M. M. Dzhrbashyan, “K probleme predstavimosti analiticheskikh funktsii”, Soobsch. Instituta Matem. i mekh. AN Armyanskoi SSR, 2, 1948, 3-40
[4] A. M. Jerbashian, “On the theory of weighted classes of area integrable regular functions”, Complex Variables, Theory and Application: An International Journal, 50:3, 155–183 | DOI | MR | Zbl
[5] U. Rudin, Teoriya funktsii v edinichnom share iz ${\mathbf C^n}$, Mir, M., 1984 | MR