Linear representation of binary Abelian algebras
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2005), pp. 58-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper binary Аbelian algebras are studied by bringing them to known algebraic structures such as monoids. We have found conditions when binary Аbelian algebra has a linear representation, i.e. every operation of Аbelian algebra can be expressed by operation and endomorphisms of commutative monoid.
@article{UZERU_2005_3_a4,
     author = {S. S. Davidov},
     title = {Linear representation of binary {Abelian} algebras},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {58--63},
     publisher = {mathdoc},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2005_3_a4/}
}
TY  - JOUR
AU  - S. S. Davidov
TI  - Linear representation of binary Abelian algebras
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2005
SP  - 58
EP  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2005_3_a4/
LA  - ru
ID  - UZERU_2005_3_a4
ER  - 
%0 Journal Article
%A S. S. Davidov
%T Linear representation of binary Abelian algebras
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2005
%P 58-63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2005_3_a4/
%G ru
%F UZERU_2005_3_a4
S. S. Davidov. Linear representation of binary Abelian algebras. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2005), pp. 58-63. http://geodesic.mathdoc.fr/item/UZERU_2005_3_a4/

[1] Yu. M. Movsisyan, “Sverkhtozhdestva v algebrakh i mnogoobraziyakh”, UMN, 53 (1998), 61–114 | DOI | MR | Zbl

[2] J. Jezek, T. Kerka, Medial groupoids, Praha, 1983 | MR

[3] A. G. Kurosh, Obschaya algebra, Nauka, M., 1974 | MR

[4] A. V. Romanovska, J. D. H. Smith, Modes, World Scientific, Singapore, 2002

[5] J.D.H. Smith, “Entropy, character theory and centrality of finite quasigroups”, Math. Proc. Cambridge Philos. Soc., 108 (1990), 435–443 | DOI | MR