Linear representation of binary Abelian algebras
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2005), pp. 58-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present paper binary Аbelian algebras are studied by bringing them to known algebraic structures such as monoids. We have found conditions when binary Аbelian algebra has a linear representation, i.e. every operation of Аbelian algebra can be expressed by operation and endomorphisms of commutative monoid.
@article{UZERU_2005_3_a4,
     author = {S. S. Davidov},
     title = {Linear representation of binary {Abelian} algebras},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {58--63},
     year = {2005},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2005_3_a4/}
}
TY  - JOUR
AU  - S. S. Davidov
TI  - Linear representation of binary Abelian algebras
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2005
SP  - 58
EP  - 63
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZERU_2005_3_a4/
LA  - ru
ID  - UZERU_2005_3_a4
ER  - 
%0 Journal Article
%A S. S. Davidov
%T Linear representation of binary Abelian algebras
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2005
%P 58-63
%N 3
%U http://geodesic.mathdoc.fr/item/UZERU_2005_3_a4/
%G ru
%F UZERU_2005_3_a4
S. S. Davidov. Linear representation of binary Abelian algebras. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2005), pp. 58-63. http://geodesic.mathdoc.fr/item/UZERU_2005_3_a4/

[1] Yu. M. Movsisyan, “Sverkhtozhdestva v algebrakh i mnogoobraziyakh”, UMN, 53 (1998), 61–114 | DOI | MR | Zbl

[2] J. Jezek, T. Kerka, Medial groupoids, Praha, 1983 | MR

[3] A. G. Kurosh, Obschaya algebra, Nauka, M., 1974 | MR

[4] A. V. Romanovska, J. D. H. Smith, Modes, World Scientific, Singapore, 2002

[5] J.D.H. Smith, “Entropy, character theory and centrality of finite quasigroups”, Math. Proc. Cambridge Philos. Soc., 108 (1990), 435–443 | DOI | MR