Extremal property of waiting times in $GI|G|1|\infty$ model
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2005), pp. 47-52
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper stationary distribution functions $W$ and $W^*$ of waiting times, which are limits for actual and virtual waiting times across the time axis, in the $GI|G|1|\infty$ model under $FIFO$ discipline are examined.
The following extremal property is proved. For all $x\in(0,+\infty)$ in the case of non-Poissonian entering stream of demands the strict inequalities $W(x)>W^*(x)>\hat{W}(x)$ are valid, where $\hat{W}$ is the waiting times’ stationary distribution function in the case of the Poissonian entering stream.
@article{UZERU_2005_3_a2,
author = {A. A. Danielyan},
title = {Extremal property of waiting times in $GI|G|1|\infty$ model},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {47--52},
publisher = {mathdoc},
number = {3},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_2005_3_a2/}
}
TY - JOUR AU - A. A. Danielyan TI - Extremal property of waiting times in $GI|G|1|\infty$ model JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2005 SP - 47 EP - 52 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2005_3_a2/ LA - ru ID - UZERU_2005_3_a2 ER -
A. A. Danielyan. Extremal property of waiting times in $GI|G|1|\infty$ model. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2005), pp. 47-52. http://geodesic.mathdoc.fr/item/UZERU_2005_3_a2/