Spaces with limit operation
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2005), pp. 5-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work the space $(X, \Lambda)$ with limit operation (constructed by I. G. Khachatryan) is studied with the help of non-standard models. With the help of nonstandard extensions are described the complete systems of neighbourhood of $(X, \Lambda)$, the open and closed sets, the convergence, the limit points of the set, the spaces as well as separation spaces.
@article{UZERU_2005_2_a0,
     author = {V. S. Atabekyan},
     title = {Spaces with limit operation},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {5--10},
     publisher = {mathdoc},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2005_2_a0/}
}
TY  - JOUR
AU  - V. S. Atabekyan
TI  - Spaces with limit operation
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2005
SP  - 5
EP  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2005_2_a0/
LA  - ru
ID  - UZERU_2005_2_a0
ER  - 
%0 Journal Article
%A V. S. Atabekyan
%T Spaces with limit operation
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2005
%P 5-10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2005_2_a0/
%G ru
%F UZERU_2005_2_a0
V. S. Atabekyan. Spaces with limit operation. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2005), pp. 5-10. http://geodesic.mathdoc.fr/item/UZERU_2005_2_a0/

[1] I.G. Khachatryan, Prostranstva s operatsiei predela, Izd-vo EGU, Erevan, 1999

[2] R.A. Aleksandryan, E.A. Mirzakhanyan, Obschaya topologiya, Vyssh. shkola, Moskva, 1979

[3] M. Devis, Prikladnoi nestandartnyi analiz, Mir, Moskva, 1980 | MR

[4] A. Robinson, Vvedenie v teoriyu modelei i metamatematiku algebry, Nauka, Moskva, 1967 | MR

[5] Dzh. L. Kelli, Obschaya topologiya, Nauka, Moskva, 1981 | MR