Stability of the solution of game problems on guidance to $m$ convex and compact sets for linear systems
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2004), pp. 49-56
Cet article a éte moissonné depuis la source Math-Net.Ru
The stability of solution of game problems on guidance to convex and compact sets when objects follow the systems of ordinary linear nonstationary differential equations with constant and variable dynamics is considered. It is proved that solutions are stable with respect to small perturbation of system parameters and small perturbation of initial values.
Keywords:
Solution of game problems on guidance, convex and compact sets.
@article{UZERU_2004_3_a2,
author = {A. S. Chlingaryan},
title = {Stability of the solution of game problems on guidance to $m$ convex and compact sets for linear systems},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {49--56},
year = {2004},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_2004_3_a2/}
}
TY - JOUR AU - A. S. Chlingaryan TI - Stability of the solution of game problems on guidance to $m$ convex and compact sets for linear systems JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2004 SP - 49 EP - 56 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZERU_2004_3_a2/ LA - ru ID - UZERU_2004_3_a2 ER -
%0 Journal Article %A A. S. Chlingaryan %T Stability of the solution of game problems on guidance to $m$ convex and compact sets for linear systems %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2004 %P 49-56 %N 3 %U http://geodesic.mathdoc.fr/item/UZERU_2004_3_a2/ %G ru %F UZERU_2004_3_a2
A. S. Chlingaryan. Stability of the solution of game problems on guidance to $m$ convex and compact sets for linear systems. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2004), pp. 49-56. http://geodesic.mathdoc.fr/item/UZERU_2004_3_a2/
[1] M. S. Gabrielyan, Uchenye zapiski EGU, 1976, no. 1, 34–39
[2] N. N. Krasovskii, Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 157–163
[3] E. E. Li, L. Markus, Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 572 pp.
[4] M. S. Gabrielyan, Mezh vuz. sb. nauchnykh trudov. Matematika, 5, Er., EGU, 1985, 124–134
[5] B. P. Demidovich, Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967, 63–69 | MR