Exact particular solutions of Klein--Gordon equation and their application in fluid mechanics
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2004), pp. 42-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

The behavior of a rapid wave (the precursor) spreading in a liquid with gas bubbles has been studied. For its description, the nonlinear Klein–Gordon equation with dissipative components was modeled. Its exact partial solutions were constructed, describing the displacement of solitons (solitary waves), both at a subsonic speed (known earlier) and at a supersonic speed. Record of dissipation (viscosity) leads to solutions that describe the structures of shock waves in the examined mixture. The obtained analytic solutions correctly reflect the process of dissemination of waves observed in the experiment.
Mots-clés : Klein–Gordon equation
Keywords: process of dissemination of waves.
@article{UZERU_2004_3_a1,
     author = {{\CYRSH}. {\CYRG}{\cyrr}{\cyri}{\cyrg}{\cyro}{\cyrr}{\cyrya}{\cyrn} and S. M. Manukyan and {\CYRG}. {\CYRO}{\cyrg}{\cyra}{\cyrn}{\cyrya}{\cyrn}},
     title = {Exact particular solutions of {Klein--Gordon} equation and their application in fluid mechanics},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {42--48},
     publisher = {mathdoc},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2004_3_a1/}
}
TY  - JOUR
AU  - Ш. Григорян
AU  - S. M. Manukyan
AU  - Г. Оганян
TI  - Exact particular solutions of Klein--Gordon equation and their application in fluid mechanics
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2004
SP  - 42
EP  - 48
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2004_3_a1/
LA  - ru
ID  - UZERU_2004_3_a1
ER  - 
%0 Journal Article
%A Ш. Григорян
%A S. M. Manukyan
%A Г. Оганян
%T Exact particular solutions of Klein--Gordon equation and their application in fluid mechanics
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2004
%P 42-48
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2004_3_a1/
%G ru
%F UZERU_2004_3_a1
Ш. Григорян; S. M. Manukyan; Г. Оганян. Exact particular solutions of Klein--Gordon equation and their application in fluid mechanics. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2004), pp. 42-48. http://geodesic.mathdoc.fr/item/UZERU_2004_3_a1/

[1] A. Korpel, TIIER, 32:9 (1984), 6–30

[2] V. E. Nakoryakov, B. G. Pokusaev, I. R. Shreiber, Volnovaya dinamika gazo- i parozhidkostnykh sred, Energoatomizdat, M., 1990, 248 pp. | MR

[3] R. I. Nigmatulin, Dinamika mnogofaznykh sred, v. II, Nauka, M., 1987, 360 pp.

[4] G. G. Oganyan, Izv. RAN, MZhG, 1994, no. 6, 75–83 | Zbl

[5] J. Weiss, M. Tabor, G. Carnevale, J. Math. Phis., 24:3 (1983), 522–536 | DOI | MR

[6] H. H. Kudryashov, PMM, 52:3 (1988), 465–170 | MR

[7] H. H. Kudryashov, PMM, 65:5 (2001), 884–894 | MR | Zbl

[8] G. B. Whitham, Lineinye n nelineinye volny, Mir, M., 1977, 623 pp.