On the inversibility of some Furier type integral operators
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2004), pp. 3-6.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers in the space $L^2(0, \infty)$ a Fourier type integral operator $U$, which arise in the inverse problem of the quantum scattering theory. It is proved, that either operator $U$ or its conjugate $U^*$ is invertible.
@article{UZERU_2004_2_a0,
     author = {I. G. Khachatryan},
     title = {On the inversibility of some {Furier} type integral operators},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--6},
     publisher = {mathdoc},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2004_2_a0/}
}
TY  - JOUR
AU  - I. G. Khachatryan
TI  - On the inversibility of some Furier type integral operators
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2004
SP  - 3
EP  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2004_2_a0/
LA  - ru
ID  - UZERU_2004_2_a0
ER  - 
%0 Journal Article
%A I. G. Khachatryan
%T On the inversibility of some Furier type integral operators
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2004
%P 3-6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2004_2_a0/
%G ru
%F UZERU_2004_2_a0
I. G. Khachatryan. On the inversibility of some Furier type integral operators. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2004), pp. 3-6. http://geodesic.mathdoc.fr/item/UZERU_2004_2_a0/

[1] V. A. Marchenko, Operatory Shturma-Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977

[2] I. G. Khachatryan, “Neobkhodimye i dostatochnye usloviya razreshimosti obratnoi zadachi rasseyaniya dlya differentsialnykh operatorov vysshikh poryadkov na poluosi”, Dokl. AN Arm. SSR, 77:2 (1983), 55–58 | MR | Zbl

[3] I. G. Khachatryan, “Ob odnoi formule sledov”, Izv. AN Arm. SSR, Matematika, 20:1 (1985), 41–52 | MR | Zbl

[4] M. M. Dzhrbashyan, Integralnye preobrazovaniya i predstavlenie funktsii v kompleksnoi oblasti, Nauka, M., 1966

[5] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[6] K. Gofman, Banakhovy prostranstva analiticheskikh funktsii, IL, M., 1975