On the inversibility of some Furier type integral operators
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2004), pp. 3-6
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper considers in the space $L^2(0, \infty)$ a Fourier type integral operator $U$, which arise in the inverse problem of the quantum scattering theory. It is proved, that either operator $U$ or its conjugate $U^*$ is invertible.
@article{UZERU_2004_2_a0,
author = {I. G. Khachatryan},
title = {On the inversibility of some {Furier} type integral operators},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {3--6},
year = {2004},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_2004_2_a0/}
}
TY - JOUR AU - I. G. Khachatryan TI - On the inversibility of some Furier type integral operators JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2004 SP - 3 EP - 6 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZERU_2004_2_a0/ LA - ru ID - UZERU_2004_2_a0 ER -
I. G. Khachatryan. On the inversibility of some Furier type integral operators. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2004), pp. 3-6. http://geodesic.mathdoc.fr/item/UZERU_2004_2_a0/
[1] V. A. Marchenko, Operatory Shturma-Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977
[2] I. G. Khachatryan, “Neobkhodimye i dostatochnye usloviya razreshimosti obratnoi zadachi rasseyaniya dlya differentsialnykh operatorov vysshikh poryadkov na poluosi”, Dokl. AN Arm. SSR, 77:2 (1983), 55–58 | MR | Zbl
[3] I. G. Khachatryan, “Ob odnoi formule sledov”, Izv. AN Arm. SSR, Matematika, 20:1 (1985), 41–52 | MR | Zbl
[4] M. M. Dzhrbashyan, Integralnye preobrazovaniya i predstavlenie funktsii v kompleksnoi oblasti, Nauka, M., 1966
[5] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR
[6] K. Gofman, Banakhovy prostranstva analiticheskikh funktsii, IL, M., 1975