On a rate of convergence in the $GI|G|1| \infty$ model
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2004), pp. 28-33
Cet article a éte moissonné depuis la source Math-Net.Ru
In the present paper one more estimation on a rate of convergence of actual waiting time to its stationary value in the $GI|G|1| \infty$ model is obtained. It leads to a similar estimation for total empty time of a server when the traffic intensity of the model is more than one.
@article{UZERU_2004_1_a2,
author = {T. A. Grigoryan},
title = {On a rate of convergence in the $GI|G|1| \infty$ model},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {28--33},
year = {2004},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_2004_1_a2/}
}
T. A. Grigoryan. On a rate of convergence in the $GI|G|1| \infty$ model. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2004), pp. 28-33. http://geodesic.mathdoc.fr/item/UZERU_2004_1_a2/
[1] B. V. Gnedenko, I. N. Kovalenko, Vvedenie v teoriyu massovogo obsluzhivaniya, Nauka, M., 1987 | MR
[2] L. Kleinrok, Vychislitelnye sistemy s ocheredyami, Mir, M., 1979
[3] A. A. Borovkov, Veroyatnostnye protsessy v teorii massovogo obsluzhivaniya, Nauka, M., 1972
[4] V. V. Petrov, Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987
[5] N. U. Prahbu, Stochastic Storage Processes, Springer-Verlag, New-York-Heidelberg-Berlin, 1980 | MR