On the stability by acting force with pair imagining roots for the second order system
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2003), pp. 50-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of stability of system for second order of non-linear differential equations in critical case has been considered, when the characteristic equation, corresponding to linear approximation of system, has pair imagining roots. Sufficient conditions have been obtained in case of which the trivial solution of the considered system is either asymptotic stable or non-stable for acting force.
Mots-clés : Sufficient conditions
Keywords: critical case.
@article{UZERU_2003_3_a7,
     author = {S. R. Hambardzumyan},
     title = {On the stability by acting force with pair imagining roots for the second order system},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {50--56},
     publisher = {mathdoc},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2003_3_a7/}
}
TY  - JOUR
AU  - S. R. Hambardzumyan
TI  - On the stability by acting force with pair imagining roots for the second order system
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2003
SP  - 50
EP  - 56
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2003_3_a7/
LA  - ru
ID  - UZERU_2003_3_a7
ER  - 
%0 Journal Article
%A S. R. Hambardzumyan
%T On the stability by acting force with pair imagining roots for the second order system
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2003
%P 50-56
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2003_3_a7/
%G ru
%F UZERU_2003_3_a7
S. R. Hambardzumyan. On the stability by acting force with pair imagining roots for the second order system. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2003), pp. 50-56. http://geodesic.mathdoc.fr/item/UZERU_2003_3_a7/

[1] I. G. Malkin, Ustoichivost dvizheniya, Nauka, M., 1966 | MR | Zbl

[2] M. S. Gabrielyan, S. G. Shaginyan, Uchenye zapiski EGU, 1989, no. 1, 27–32 | MR | Zbl

[3] S. G. Shaginyan, Uchenye zapiski EGU, 1986, no. 2, 39–45 | MR

[4] S. R. Ambartsumyan, E. A. Barbashin, “O suschestvovanii funktsii Lyapunova v sluchae asimptoticheskoi ustoichivosti v tselom”, Prikl. matematika i mekhanika, 18:3 (1954), 345–350

[5] S. G. Shaginyan, S. R. Ambartsumyan, Uchenye zapiski EGU, 1996, no. 2, 30–36