Non-steady-state flow of real incompressible fluid in pipe with porous walls
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2003), pp. 45-49
Voir la notice de l'article provenant de la source Math-Net.Ru
Non-steady-state flow of real incompressible liquid in a cylindric pipe with porous lateral surfaces is investigated. Nonstationarity of the problem is conditioned by non-steady-state movement of the fluid, which is expressed in differential equations of motion. The problem is solved by the operational calculus method by use of Laplace double integral transformations on spatial and time coordinates. Characteristics of the flow motion are determined as functions of spatial and time coordinates.
Mots-clés :
Cylindric pipe
Keywords: Laplace double integral transformations.
Keywords: Laplace double integral transformations.
@article{UZERU_2003_3_a6,
author = {G. H. Babajanyan},
title = {Non-steady-state flow of real incompressible fluid in pipe with porous walls},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {45--49},
publisher = {mathdoc},
number = {3},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_2003_3_a6/}
}
TY - JOUR AU - G. H. Babajanyan TI - Non-steady-state flow of real incompressible fluid in pipe with porous walls JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2003 SP - 45 EP - 49 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2003_3_a6/ LA - ru ID - UZERU_2003_3_a6 ER -
%0 Journal Article %A G. H. Babajanyan %T Non-steady-state flow of real incompressible fluid in pipe with porous walls %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2003 %P 45-49 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2003_3_a6/ %G ru %F UZERU_2003_3_a6
G. H. Babajanyan. Non-steady-state flow of real incompressible fluid in pipe with porous walls. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2003), pp. 45-49. http://geodesic.mathdoc.fr/item/UZERU_2003_3_a6/