The ternary hyperidentities of associativity
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2003), pp. 36-44

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to ternary hyperidentities of associativity, which are determined by the equality $((x, y, z),u, v) = (x,y,(z, u, v))$. We get the following three hyperidentities: $$X(Y(x, y, z), u, v) = Y(x, y, X(z, u, v)),$$ $$X(X(x, y, z), u, v) = Y(x, y, Y(z, u, v)),$$ $$X(Y (x, y, z), u, v) = X (x, y,Y(z,u, v)).$$ The criteria of realization are proved for each of them in the reversible algebras.
Mots-clés : Reversible algebras
Keywords: hyperidentities.
@article{UZERU_2003_3_a5,
     author = {L. R. Abramyan},
     title = {The ternary hyperidentities of associativity},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {36--44},
     publisher = {mathdoc},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2003_3_a5/}
}
TY  - JOUR
AU  - L. R. Abramyan
TI  - The ternary hyperidentities of associativity
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2003
SP  - 36
EP  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2003_3_a5/
LA  - ru
ID  - UZERU_2003_3_a5
ER  - 
%0 Journal Article
%A L. R. Abramyan
%T The ternary hyperidentities of associativity
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2003
%P 36-44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2003_3_a5/
%G ru
%F UZERU_2003_3_a5
L. R. Abramyan. The ternary hyperidentities of associativity. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2003), pp. 36-44. http://geodesic.mathdoc.fr/item/UZERU_2003_3_a5/