The ternary hyperidentities of associativity
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2003), pp. 36-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to ternary hyperidentities of associativity, which are determined by the equality $((x, y, z),u, v) = (x,y,(z, u, v))$. We get the following three hyperidentities: $$X(Y(x, y, z), u, v) = Y(x, y, X(z, u, v)),$$ $$X(X(x, y, z), u, v) = Y(x, y, Y(z, u, v)),$$ $$X(Y (x, y, z), u, v) = X (x, y,Y(z,u, v)).$$ The criteria of realization are proved for each of them in the reversible algebras.
Mots-clés : Reversible algebras
Keywords: hyperidentities.
@article{UZERU_2003_3_a5,
     author = {L. R. Abramyan},
     title = {The ternary hyperidentities of associativity},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {36--44},
     publisher = {mathdoc},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2003_3_a5/}
}
TY  - JOUR
AU  - L. R. Abramyan
TI  - The ternary hyperidentities of associativity
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2003
SP  - 36
EP  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2003_3_a5/
LA  - ru
ID  - UZERU_2003_3_a5
ER  - 
%0 Journal Article
%A L. R. Abramyan
%T The ternary hyperidentities of associativity
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2003
%P 36-44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2003_3_a5/
%G ru
%F UZERU_2003_3_a5
L. R. Abramyan. The ternary hyperidentities of associativity. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2003), pp. 36-44. http://geodesic.mathdoc.fr/item/UZERU_2003_3_a5/

[1] V. D. Belousov, “Sistemy kvazigrupp s obobschennymi tozhdestvami”, Uspekhi matem. nauk, XX:1(121) (1965), 75–146 | Zbl

[2] Yu. M. Movsisyan, Vvedenie v teoriyu algebr so sverkhtozhdestvami, Izd. EGU, Er., 1986 | MR | Zbl

[3] Yu. M. Movsisyan, “Sverkhtozhdestva v algebrakh i mnogoobraziyakh”, Uspekhi matem. nauk, 53:1 (1998), 61–114 | DOI | MR | Zbl

[4] Yu. M. Movsisyan, “Hyperidentities and Hypervarieties”, Sci. Math. Jap., 54 (2001), 595–640 | MR | Zbl

[5] V. A. Artamonov, V. N. Salii, L. A. Skornyakov i dr., Obschaya algebra, v. 2, ed. L. A. Skornyakov, Nauka, M., 1991 | MR | Zbl

[6] D. Schwcigert, Hyperidentities, Algebras and Orders, Kluwer Academic Publishers, Dordrecht–Boston–London, 1993 | MR

[7] K. Iseki, “A way to BCK and related systems”, Math. Japon., 52:1 (2000), 163–170 | MR | Zbl

[8] K. Denecke, Sh. L. Wismath, Universal Algebra and Applications in Theoretical Computer Science, Chapman and Hall/CRC, Boca Raton–London–New York–Washington, 2002 | MR | Zbl

[9] V. D. Belousov, $n$-arnye kvazigruppy, Shtiintsa, Kishinev, 1972 | MR | Zbl

[10] A. G. Kurosh, General algebra, Lections 1969–1970, Nauka, M., 1974, 158 pp. (in Russian) | MR