The investigation of the differential operator's point spectrum in infinity with precise behavior coefficients
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2003), pp. 8-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

In $L^2(\mathbb {R})$ space an $m\geq 2$, linear order self-adjoint differential operator is observed, the coefficients of which have precise behavior in infinity. The operator’s point spectrum is examined. Particularly the limitation of point spectrum and the non-infinity of boundary points set are proved.
Keywords: Self-adjoint differential operator, point spectrum, boundary points set.
@article{UZERU_2003_3_a1,
     author = {A. G. Petrosyan},
     title = {The investigation of the differential operator's point  spectrum in infinity with precise behavior coefficients},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {8--15},
     publisher = {mathdoc},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2003_3_a1/}
}
TY  - JOUR
AU  - A. G. Petrosyan
TI  - The investigation of the differential operator's point  spectrum in infinity with precise behavior coefficients
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2003
SP  - 8
EP  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2003_3_a1/
LA  - ru
ID  - UZERU_2003_3_a1
ER  - 
%0 Journal Article
%A A. G. Petrosyan
%T The investigation of the differential operator's point  spectrum in infinity with precise behavior coefficients
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2003
%P 8-15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2003_3_a1/
%G ru
%F UZERU_2003_3_a1
A. G. Petrosyan. The investigation of the differential operator's point  spectrum in infinity with precise behavior coefficients. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2003), pp. 8-15. http://geodesic.mathdoc.fr/item/UZERU_2003_3_a1/

[1] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl

[2] I. G. Khachatryan, “Ob odnoi obratnoi zadache dlya differentsialnykh operatorov vysshikh poryadkov na vsei osi”, Izv. AN Arm. SSR, Matematika, 18:5 (1983), 394–402 | MR | Zbl

[3] S. V. Babasyan, I. G. Khachatryan, Dokl. AN Arm. SSR. Matematika, 87:3 (1988), 111–114 | MR | Zbl