The investigation of the differential operator's point spectrum in infinity with precise behavior coefficients
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2003), pp. 8-15
Cet article a éte moissonné depuis la source Math-Net.Ru
In $L^2(\mathbb {R})$ space an $m\geq 2$, linear order self-adjoint differential operator is observed, the coefficients of which have precise behavior in infinity. The operator’s point spectrum is examined. Particularly the limitation of point spectrum and the non-infinity of boundary points set are proved.
Keywords:
Self-adjoint differential operator, point spectrum, boundary points set.
@article{UZERU_2003_3_a1,
author = {A. G. Petrosyan},
title = {The investigation of the differential operator's point spectrum in infinity with precise behavior coefficients},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {8--15},
year = {2003},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_2003_3_a1/}
}
TY - JOUR AU - A. G. Petrosyan TI - The investigation of the differential operator's point spectrum in infinity with precise behavior coefficients JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2003 SP - 8 EP - 15 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZERU_2003_3_a1/ LA - ru ID - UZERU_2003_3_a1 ER -
%0 Journal Article %A A. G. Petrosyan %T The investigation of the differential operator's point spectrum in infinity with precise behavior coefficients %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2003 %P 8-15 %N 3 %U http://geodesic.mathdoc.fr/item/UZERU_2003_3_a1/ %G ru %F UZERU_2003_3_a1
A. G. Petrosyan. The investigation of the differential operator's point spectrum in infinity with precise behavior coefficients. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2003), pp. 8-15. http://geodesic.mathdoc.fr/item/UZERU_2003_3_a1/
[1] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl
[2] I. G. Khachatryan, “Ob odnoi obratnoi zadache dlya differentsialnykh operatorov vysshikh poryadkov na vsei osi”, Izv. AN Arm. SSR, Matematika, 18:5 (1983), 394–402 | MR | Zbl
[3] S. V. Babasyan, I. G. Khachatryan, Dokl. AN Arm. SSR. Matematika, 87:3 (1988), 111–114 | MR | Zbl