On convolution transforms whose inversion functions have complex roots
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2003), pp. 3-7
Cet article a éte moissonné depuis la source Math-Net.Ru
For convolution transforms it has been received inversion formula, when $\phi(x)=L^{2}(-\infty, +\infty)$, and inversion functions $E(s)=\prod\limits_{k=1}^{\infty}\Big(1-\dfrac{s^2}{a_k^2} \Big)$ have complex roots satisfying to conditions $$\sum\limits_{k=1}^{\infty}+\infty \dfrac {1}{|a _k|^2},~~|\arg a_k| \le \dfrac{\pi}{4}.$$
Keywords:
Convolution transforms, complex roots.
@article{UZERU_2003_3_a0,
author = {S. A. Akopyan},
title = {On convolution transforms whose inversion functions have complex roots},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {3--7},
year = {2003},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_2003_3_a0/}
}
TY - JOUR AU - S. A. Akopyan TI - On convolution transforms whose inversion functions have complex roots JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2003 SP - 3 EP - 7 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZERU_2003_3_a0/ LA - ru ID - UZERU_2003_3_a0 ER -
S. A. Akopyan. On convolution transforms whose inversion functions have complex roots. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2003), pp. 3-7. http://geodesic.mathdoc.fr/item/UZERU_2003_3_a0/
[1] I. I. Khirshman, D. M. Uidler, Preobrazovaniya tipa svertki, IL, M., 1958
[2] Y. Dauns, D. M. Widder, Pacific Journal of Math., 15:2 (1965), 427–442 | DOI | MR | Zbl
[3] C. A. Akopyan, Izv. AN Arm. SSR, seriya fiz.-mat. nauki, 13:1 (1960), 3–27 | MR | Zbl
[4] S. A. Akopyan, V vsesoyuznaya konferentsiya po teorii funktsii. Tezisy dokladov, Er., 1960, 9–10
[5] M. M. Dzhrbashyan, Integralnye preobrazovanii i predstavleniya funktsii v kompleksnoi oblasti, M., 1966 | MR | Zbl