On convolution transforms whose inversion functions have complex roots
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2003), pp. 3-7.

Voir la notice de l'article provenant de la source Math-Net.Ru

For convolution transforms it has been received inversion formula, when $\phi(x)=L^{2}(-\infty, +\infty)$, and inversion functions $E(s)=\prod\limits_{k=1}^{\infty}\Big(1-\dfrac{s^2}{a_k^2} \Big)$ have complex roots satisfying to conditions $$\sum\limits_{k=1}^{\infty}+\infty \dfrac {1}{|a _k|^2},~~|\arg a_k| \le \dfrac{\pi}{4}.$$
Keywords: Convolution transforms, complex roots.
@article{UZERU_2003_3_a0,
     author = {S. A. Akopyan},
     title = {On convolution transforms whose inversion functions have complex roots},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--7},
     publisher = {mathdoc},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2003_3_a0/}
}
TY  - JOUR
AU  - S. A. Akopyan
TI  - On convolution transforms whose inversion functions have complex roots
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2003
SP  - 3
EP  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2003_3_a0/
LA  - ru
ID  - UZERU_2003_3_a0
ER  - 
%0 Journal Article
%A S. A. Akopyan
%T On convolution transforms whose inversion functions have complex roots
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2003
%P 3-7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2003_3_a0/
%G ru
%F UZERU_2003_3_a0
S. A. Akopyan. On convolution transforms whose inversion functions have complex roots. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2003), pp. 3-7. http://geodesic.mathdoc.fr/item/UZERU_2003_3_a0/

[1] I. I. Khirshman, D. M. Uidler, Preobrazovaniya tipa svertki, IL, M., 1958

[2] Y. Dauns, D. M. Widder, Pacific Journal of Math., 15:2 (1965), 427–442 | DOI | MR | Zbl

[3] C. A. Akopyan, Izv. AN Arm. SSR, seriya fiz.-mat. nauki, 13:1 (1960), 3–27 | MR | Zbl

[4] S. A. Akopyan, V vsesoyuznaya konferentsiya po teorii funktsii. Tezisy dokladov, Er., 1960, 9–10

[5] M. M. Dzhrbashyan, Integralnye preobrazovanii i predstavleniya funktsii v kompleksnoi oblasti, M., 1966 | MR | Zbl