On the distribution tail of sum of random number of independent random variables
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2003), pp. 140-142
Cet article a éte moissonné depuis la source Math-Net.Ru
Regular variation conditions for distribution tail of a sum of random number of independent random variables are established. It is assumed that the random index does not depend on the summands.
Mots-clés :
Random variables
Keywords: distribution tail of sum.
Keywords: distribution tail of sum.
@article{UZERU_2003_2_a9,
author = {I. E. Danielyan},
title = {On the distribution tail of sum of random number of independent random variables},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {140--142},
year = {2003},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_2003_2_a9/}
}
TY - JOUR AU - I. E. Danielyan TI - On the distribution tail of sum of random number of independent random variables JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2003 SP - 140 EP - 142 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZERU_2003_2_a9/ LA - ru ID - UZERU_2003_2_a9 ER -
%0 Journal Article %A I. E. Danielyan %T On the distribution tail of sum of random number of independent random variables %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2003 %P 140-142 %N 2 %U http://geodesic.mathdoc.fr/item/UZERU_2003_2_a9/ %G ru %F UZERU_2003_2_a9
I. E. Danielyan. On the distribution tail of sum of random number of independent random variables. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2003), pp. 140-142. http://geodesic.mathdoc.fr/item/UZERU_2003_2_a9/
[1] E. Seneta, Pravilno menyayuschiesya funktsii, Nauka, M., 1985 | MR | Zbl
[2] A. J. Stam, “Regular variation of the tail of a subordinated probability distribution”, Adv. Appl. Probab., 5 (1973), 308–327 | DOI | MR | Zbl
[3] R. Greenwood, “Asymptotics of randomly stopped sequences with independent increments”, Ann. Prob., 1973, no. 1, 317–321 | DOI | MR | Zbl
[4] A. Z. Arakelyan, E. A. Danielyan, “O maksimume summ sluchainogo chisla nezavisimykh sluchainykh velichin”, Uchenye zapiski EGU, 2000, no. 2, 24–35
[5] V. Feller, v 2 t., v. 2, Mir, M., 1984, 751 pp. | MR | Zbl