Algebraic multilevel preconditioner for second order finite element approximation in rectangular domains. II. Multigrid preconditioner
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2003), pp. 18-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper, consisting of two parts, is devoted to constructing an algebraic multigrid preconditioner for stiffness matrices arising in second-order finite element approximation of elliptic boundary value problems. In the second part of the paper, being based on the two-level preconditioner described in the first part, the multigrid preconditioner is constructed. The multigrid preconditioner is proved to be spectrally equivalent to the initial stiffness matrix and its arithmetic cost is proportional to the dimensionality of the finest-grid algebraic problem.
Keywords: Elliptic boundary value problems, two-level preconditioner.
@article{UZERU_2003_2_a2,
     author = {Yu. R. Hakopian and H. A. Hovhannisyan},
     title = {Algebraic multilevel preconditioner for second order finite element approximation in rectangular domains. {II.} {Multigrid} preconditioner},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {18--24},
     publisher = {mathdoc},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2003_2_a2/}
}
TY  - JOUR
AU  - Yu. R. Hakopian
AU  - H. A. Hovhannisyan
TI  - Algebraic multilevel preconditioner for second order finite element approximation in rectangular domains. II. Multigrid preconditioner
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2003
SP  - 18
EP  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2003_2_a2/
LA  - ru
ID  - UZERU_2003_2_a2
ER  - 
%0 Journal Article
%A Yu. R. Hakopian
%A H. A. Hovhannisyan
%T Algebraic multilevel preconditioner for second order finite element approximation in rectangular domains. II. Multigrid preconditioner
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2003
%P 18-24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2003_2_a2/
%G ru
%F UZERU_2003_2_a2
Yu. R. Hakopian; H. A. Hovhannisyan. Algebraic multilevel preconditioner for second order finite element approximation in rectangular domains. II. Multigrid preconditioner. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2003), pp. 18-24. http://geodesic.mathdoc.fr/item/UZERU_2003_2_a2/

[1] Yu. R. Akopyan, G. A. Oganesyan, “Algebraicheskii mnogosetochnyi pereobuslavlivatel dlya konechnoelementnykh approksimatsii vtorogo poryadka v pryamogolnykh oblastyakh. I. Dvukhurovnevyi pereobuslavlivatel”, Uchenye zapiski EGU, 2003, no. 1, 3–13

[2] Yu. R. Hakopian, “Algebraic multilevel/substructuring preconditioner in finite element method with pricewise”, Mathematical Problems of Computer Science, 21, Institute for Informatics and Automation Problems of the National Acad. Sci. of Armenia, Yr., 2000, 164–180

[3] Yu. R. Hakopian, Yu. A. Kuznetsov, “Algebraic Multigrid/Substructuring Preconditioners on Triangular Grids”, Soviet Journal of Numerical Analysis and Mathematical Modelling, 6:6 (1991), 453–483 | DOI | MR | Zbl

[4] Yu. A. Kuznetsov, “Algebraic multigrid domain decomposition methods”, Sov. J. Numer. Anal. Math. Modelling, 4:5 (1989), 351–379 | DOI | MR | Zbl

[5] V. V. Voevodin, Yu. A. Kuznetsov, Matritsy i vychisleniya, Nauka, M., 1984 | MR | Zbl

[6] O. P. Axelsson, S. Vassilevski, “Asymptotic work estimates for AMLI methods”, Appl. Numer. Math., 7 (1991), 437–451 | DOI | MR | Zbl