On a third order nonlinear equation
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2003), pp. 14-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work a nonlinear equation, connected with the hyperbolic equations, satisfying the Huygens’ principle, is considered. An evolution equation for the bend of oscillations, described by the solutions of these equations, is obtained. The fact that it is a nonlinear Shrodinger equation is shown.
Keywords: Huygens’ principle, Shrodinger equation.
@article{UZERU_2003_2_a1,
     author = {G. G. Kazaryan},
     title = {On a third order nonlinear equation},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {14--17},
     publisher = {mathdoc},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2003_2_a1/}
}
TY  - JOUR
AU  - G. G. Kazaryan
TI  - On a third order nonlinear equation
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2003
SP  - 14
EP  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2003_2_a1/
LA  - ru
ID  - UZERU_2003_2_a1
ER  - 
%0 Journal Article
%A G. G. Kazaryan
%T On a third order nonlinear equation
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2003
%P 14-17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2003_2_a1/
%G ru
%F UZERU_2003_2_a1
G. G. Kazaryan. On a third order nonlinear equation. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2003), pp. 14-17. http://geodesic.mathdoc.fr/item/UZERU_2003_2_a1/

[1] Dodd R., Eilbek Dzh., Gibbon Dzh., Morris Kh., Solitony i nelineinye volnovye uravneniya, Mir, M., 1988 | MR | Zbl

[2] G. G. Kazarian, A. O. Oganesian, Countemp. Math. Anal., 29:5 (1994), 64–73 | MR