On formalization of notion of $\delta$-reduction in monotonic models of typed $\lambda$-calculus
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2003), pp. 27-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper monotonic models of typed $\lambda$-calculus are examined. Formal definition of concept of a $\delta$-reduction is given. Strong $\delta$-normalization and strong $\beta\delta$-normalization of terms are proved. The concept of a natural $\delta$-reduction is defined and the necessary and sufficient condition for uniqueness of a $\beta\delta$-normal form for such concept of a $\delta$-reduction is resulted.
Keywords: Monotonic models of typed $\lambda$-calculus, reduction.
@article{UZERU_2003_1_a3,
     author = {L. Budaghyan},
     title = {On formalization of notion of $\delta$-reduction in monotonic models of typed $\lambda$-calculus},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {27--36},
     publisher = {mathdoc},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2003_1_a3/}
}
TY  - JOUR
AU  - L. Budaghyan
TI  - On formalization of notion of $\delta$-reduction in monotonic models of typed $\lambda$-calculus
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2003
SP  - 27
EP  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2003_1_a3/
LA  - ru
ID  - UZERU_2003_1_a3
ER  - 
%0 Journal Article
%A L. Budaghyan
%T On formalization of notion of $\delta$-reduction in monotonic models of typed $\lambda$-calculus
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2003
%P 27-36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2003_1_a3/
%G ru
%F UZERU_2003_1_a3
L. Budaghyan. On formalization of notion of $\delta$-reduction in monotonic models of typed $\lambda$-calculus. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2003), pp. 27-36. http://geodesic.mathdoc.fr/item/UZERU_2003_1_a3/

[1] S. A. Nigiyan, “Funktsionalnye yazyki”, Programmirovanie, 1991, no. 5, 77–86 | Zbl

[2] S. A. Nigiyan, “On the interpretation of functional programming languages”, Programmirovanie, 1993, no. 2, 58–68 | MR | Zbl

[3] S. A. Nigiyan, L. E. Budagyan, “Pravila vychisleniya glavnoi funktsii naimenshego resheniya dlya odnogo klassa sistem rekursivnykh uravnenii.”, DNAN RA, 99:3 (1999), 197—203 | MR

[4] H. Barendregt, The Lambda Calculus Its Syntax and Semantics, North-Holland Pub. Comp., 1981 | MR | Zbl

[5] D. S. Scott, “Relating Theories of the Lambda Calculus”, To H. B. Curry: Essays on combinatory logic, lambda calculus and formalism, eds. Hindley J., Seldin J., Academic Press, N.Y. L., 1980, 403–450 | MR