Group analysis of some nonlinear equation
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2003), pp. 14-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the investigation from the point of group analysis and group classification of some class of third order nonlinear partial differential equation. The whole groups of symmetry, concerning which equations are invariant, are obtained, the corresponding basis vectors of the Lee algebra are pointed.
Keywords: Groups of symmetry, third order nonlinear partial differential equation,vectors of the Lee algebra.
@article{UZERU_2003_1_a1,
     author = {G. G. Kazaryan},
     title = {Group analysis of some nonlinear equation},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {14--20},
     publisher = {mathdoc},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2003_1_a1/}
}
TY  - JOUR
AU  - G. G. Kazaryan
TI  - Group analysis of some nonlinear equation
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2003
SP  - 14
EP  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2003_1_a1/
LA  - ru
ID  - UZERU_2003_1_a1
ER  - 
%0 Journal Article
%A G. G. Kazaryan
%T Group analysis of some nonlinear equation
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2003
%P 14-20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2003_1_a1/
%G ru
%F UZERU_2003_1_a1
G. G. Kazaryan. Group analysis of some nonlinear equation. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2003), pp. 14-20. http://geodesic.mathdoc.fr/item/UZERU_2003_1_a1/

[1] N. Kh. Ibragimov, Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR | Zbl

[2] G. G. Kazarian, A. O. Oganesian, Countemp. Math. Anal., 29:5 (1994), 64–73 | MR

[3] P. Gunther, Huygens’ Principle and Hiperbolic Equations, Academic Press, Inc., Boston, MA, 1988, 847 pp. | MR

[4] G. G. Kazaryan, “Preobrazovanie Beklunda dlya odnogo nelineinogo uravneniya”, Uchenye zapiski EGU, 1995, no. 1, 30–34 | Zbl