Algebraic multilevel preconditioner for second order finite element approximation in rectangular domains. I. Two level preconditioner
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2003), pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper, consisting of two parts, is devoted to constructing an algebraic multigrid preconditioner for stiffness matrices arising in second-order finite element approximation of elliptic boundary value problems. In the first part a two-level preconditioner, on the base of which the multigrid preconditioner will be constructed, is described.
Keywords: Multilevel preconditioner, stiffness matrices.
@article{UZERU_2003_1_a0,
     author = {Yu. R. Hakopian and H. A. Hovhannisyan},
     title = {Algebraic multilevel preconditioner for second order finite element approximation in rectangular domains. {I.} {Two} level preconditioner},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--13},
     publisher = {mathdoc},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2003_1_a0/}
}
TY  - JOUR
AU  - Yu. R. Hakopian
AU  - H. A. Hovhannisyan
TI  - Algebraic multilevel preconditioner for second order finite element approximation in rectangular domains. I. Two level preconditioner
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2003
SP  - 3
EP  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2003_1_a0/
LA  - ru
ID  - UZERU_2003_1_a0
ER  - 
%0 Journal Article
%A Yu. R. Hakopian
%A H. A. Hovhannisyan
%T Algebraic multilevel preconditioner for second order finite element approximation in rectangular domains. I. Two level preconditioner
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2003
%P 3-13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2003_1_a0/
%G ru
%F UZERU_2003_1_a0
Yu. R. Hakopian; H. A. Hovhannisyan. Algebraic multilevel preconditioner for second order finite element approximation in rectangular domains. I. Two level preconditioner. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2003), pp. 3-13. http://geodesic.mathdoc.fr/item/UZERU_2003_1_a0/

[1] O. Axelsson, Yu. R. Hakopian, Yu. A. Kuznetsov, “Multilevel preconditioning for perturbed finite element matrices”, IMA J. Numer. Anal., 17 (1997), 125–149 | DOI | MR | Zbl

[2] O. Axelsson, P. Vassilevski, “Algebraic multilevel preconditioning methods. I”, Numer. Math., 56 (1989), 157–177 | DOI | MR | Zbl

[3] O. Axellson, P. S. Vassilevskii, “Algebraic multilevel preconditioning methods. II”, SIAM J. Numer. Anal., 27:6 (1990), 1569–1590 | DOI | MR | Zbl

[4] J. Bramble, J. Pasciak, J. Xu, “Prallel multilevel preconditioners”, Math. Comp., 55 (1990), 1–22 | DOI | MR | Zbl

[5] Yu. R. Hakopian, Yu. A. Kuznetsov, “Algebraic Multigrid-Substructuring Preconditioners on Triangular Grids”, Soviet Journal of Numerical Analysis and Mathematical Modeling, 6:6 (1991), 453–483 | DOI | MR | Zbl

[6] Yu. A. Kuznetsov, “Algebraic multigrid domain decomposition methods”, Sov. J. Numer. Anal. Math. Modelling, 4:5 (1989), 351–379 | DOI | MR | Zbl

[7] H. Yserentant, “On the multilevel splitting of finite element spaces”, Numer. Math., 49 (1986), 379–412 | DOI | MR | Zbl

[8] A. A. Oganesyan, L. A. Rukhovets, Variatsionno raznostnye metody resheniya ellipticheskikh uravnenii, AN Arm.SSR, Erevan, 1979

[9] G. Strang, G. J. Fix, An Analysis of the Finite Element Method, Prentice Hall, Inc., 1973 | MR | Zbl

[10] O. C. Zienkiewcz, K. Morgan, Finite elements and approximation, Wiley-Interscience Publication, New York, 1983 | MR

[11] Yu. R. Hakopian, “Algebraic multilevel/substructuring preconditioner in finite element method with pricewise”, Mathematical Problems of Computer Science, 21, Institute for Informatics and Automation Problems of the NA Sci. of Armenia, Yr., 2000, 164–180

[12] Yu. R. Hakopian, “Algebraic multilevel preconditioner for third order element approximation”, Algebra, Geometry and their Applications, Seminar Proceedings, v. 1, Yerevan State University, Yr., 2001, 20—39 | MR | Zbl