Radial oscillations of homogeneous stellar objects and the critical value of adiabatic exponent
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2002), pp. 41-44
Cet article a éte moissonné depuis la source Math-Net.Ru
The criterion of stability against radial adiabatic oscillations is considered for the models of neutron homogeneous stars in the framework of general relativity. The critical value of adiabatic exponent $\gamma_{cr}$ is obtained in the framework of general relativity, which corresponds to the limit of stability of the star and is applicable in the whole allowable range where the parameter $\eta_1 =R/\alpha$ ($R$ – star radius, $\varepsilon$ – energy density, $\alpha=\sqrt{3c^4/(8\pi G\varepsilon)}$) varies. The obtained results are compared with the known result of Chandrasekhar.
Mots-clés :
Adiabatic oscillations
Keywords: models of neutron homogeneous stars.
Keywords: models of neutron homogeneous stars.
@article{UZERU_2002_3_a7,
author = {Sh. R. Melikian},
title = {Radial oscillations of homogeneous stellar objects and the critical value of adiabatic exponent},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {41--44},
year = {2002},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_2002_3_a7/}
}
TY - JOUR AU - Sh. R. Melikian TI - Radial oscillations of homogeneous stellar objects and the critical value of adiabatic exponent JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2002 SP - 41 EP - 44 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZERU_2002_3_a7/ LA - ru ID - UZERU_2002_3_a7 ER -
%0 Journal Article %A Sh. R. Melikian %T Radial oscillations of homogeneous stellar objects and the critical value of adiabatic exponent %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2002 %P 41-44 %N 3 %U http://geodesic.mathdoc.fr/item/UZERU_2002_3_a7/ %G ru %F UZERU_2002_3_a7
Sh. R. Melikian. Radial oscillations of homogeneous stellar objects and the critical value of adiabatic exponent. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2002), pp. 41-44. http://geodesic.mathdoc.fr/item/UZERU_2002_3_a7/
[1] S. Chandrasekhar, Astrophys. J., 140 (1964), 417–433 | DOI | MR | Zbl
[2] Ya. B. Zeldovich, I. D. Novikov, Teoriya tyagoteniya i evolyutsiya zvezd, Nauka, M., 1971 | Zbl
[3] G. Chanmugam, Astrophys. J., 217 (1977), 799 | DOI
[4] G. S. Bisnovatyi-Kogan, Fizicheskie voprosy teorii zvezdnoi evolyutsii, Nauka, M., 1989 | Zbl