Radial oscillations of homogeneous stellar objects and the critical value of adiabatic exponent
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2002), pp. 41-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The criterion of stability against radial adiabatic oscillations is considered for the models of neutron homogeneous stars in the framework of general relativity. The critical value of adiabatic exponent $\gamma_{cr}$ is obtained in the framework of general relativity, which corresponds to the limit of stability of the star and is applicable in the whole allowable range where the parameter $\eta_1 =R/\alpha$ ($R$ – star radius, $\varepsilon$ – energy density, $\alpha=\sqrt{3c^4/(8\pi G\varepsilon)}$) varies. The obtained results are compared with the known result of Chandrasekhar.
Mots-clés : Adiabatic oscillations
Keywords: models of neutron homogeneous stars.
@article{UZERU_2002_3_a7,
     author = {Sh. R. Melikian},
     title = {Radial oscillations of homogeneous stellar objects and the critical value of adiabatic exponent},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {41--44},
     year = {2002},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2002_3_a7/}
}
TY  - JOUR
AU  - Sh. R. Melikian
TI  - Radial oscillations of homogeneous stellar objects and the critical value of adiabatic exponent
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2002
SP  - 41
EP  - 44
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZERU_2002_3_a7/
LA  - ru
ID  - UZERU_2002_3_a7
ER  - 
%0 Journal Article
%A Sh. R. Melikian
%T Radial oscillations of homogeneous stellar objects and the critical value of adiabatic exponent
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2002
%P 41-44
%N 3
%U http://geodesic.mathdoc.fr/item/UZERU_2002_3_a7/
%G ru
%F UZERU_2002_3_a7
Sh. R. Melikian. Radial oscillations of homogeneous stellar objects and the critical value of adiabatic exponent. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2002), pp. 41-44. http://geodesic.mathdoc.fr/item/UZERU_2002_3_a7/

[1] S. Chandrasekhar, Astrophys. J., 140 (1964), 417–433 | DOI | MR | Zbl

[2] Ya. B. Zeldovich, I. D. Novikov, Teoriya tyagoteniya i evolyutsiya zvezd, Nauka, M., 1971 | Zbl

[3] G. Chanmugam, Astrophys. J., 217 (1977), 799 | DOI

[4] G. S. Bisnovatyi-Kogan, Fizicheskie voprosy teorii zvezdnoi evolyutsii, Nauka, M., 1989 | Zbl