Mathematical comparison of two well-known patterns of material equations for gyrotropic media
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2002), pp. 35-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two wave equations for isotropic, heterogeneous naturally gyrotropic media, based on two well-known formula of material equations are derived. It is shown that under certain conditions there exist substantial distinctions between solutions of wave equations corresponding to the two aforesaid equations.
Keywords: Wave equations, heterogeneous naturally gyrotropic media.
@article{UZERU_2002_3_a6,
     author = {A. G. Galumian and H. M. Arakelian},
     title = {Mathematical comparison of two well-known patterns of material equations for gyrotropic media},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {35--40},
     publisher = {mathdoc},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2002_3_a6/}
}
TY  - JOUR
AU  - A. G. Galumian
AU  - H. M. Arakelian
TI  - Mathematical comparison of two well-known patterns of material equations for gyrotropic media
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2002
SP  - 35
EP  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2002_3_a6/
LA  - ru
ID  - UZERU_2002_3_a6
ER  - 
%0 Journal Article
%A A. G. Galumian
%A H. M. Arakelian
%T Mathematical comparison of two well-known patterns of material equations for gyrotropic media
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2002
%P 35-40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2002_3_a6/
%G ru
%F UZERU_2002_3_a6
A. G. Galumian; H. M. Arakelian. Mathematical comparison of two well-known patterns of material equations for gyrotropic media. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2002), pp. 35-40. http://geodesic.mathdoc.fr/item/UZERU_2002_3_a6/

[1] F. I. Fedorov, Teoriya girotropii, Nauka i tekhnika, Minsk, 1976

[2] V. M. Agranovich, V. L. Ginzburg, Kristallooptika s uchetom prostranstvennoi dispersii i teoriya eksitonov, Nauka, M., 1979

[3] P. I. Lizorkin, Kurs differentsialnykh i integralnykh uravnenii s dopolnitelnymi glavami analiza, Nauka, M., 1981, 384 pp. | MR

[4] M. A. Novikov, A. A. Khyshov, Optika i spektroskopiya, 87 (1993), 416

[5] M. A. Novikov, G. V. Gelikonov, Optika i spektroskopiya, 75 (1993), 854

[6] M. V. Marmazeev, M. I. Ryazanov, ZhETF, 112 (1997), 1557