Mathematical comparison of two well-known patterns of material equations for gyrotropic media
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2002), pp. 35-40
Cet article a éte moissonné depuis la source Math-Net.Ru
Two wave equations for isotropic, heterogeneous naturally gyrotropic media, based on two well-known formula of material equations are derived. It is shown that under certain conditions there exist substantial distinctions between solutions of wave equations corresponding to the two aforesaid equations.
Keywords:
Wave equations, heterogeneous naturally gyrotropic media.
@article{UZERU_2002_3_a6,
author = {A. G. Galumian and H. M. Arakelian},
title = {Mathematical comparison of two well-known patterns of material equations for gyrotropic media},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {35--40},
year = {2002},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_2002_3_a6/}
}
TY - JOUR AU - A. G. Galumian AU - H. M. Arakelian TI - Mathematical comparison of two well-known patterns of material equations for gyrotropic media JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2002 SP - 35 EP - 40 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZERU_2002_3_a6/ LA - ru ID - UZERU_2002_3_a6 ER -
%0 Journal Article %A A. G. Galumian %A H. M. Arakelian %T Mathematical comparison of two well-known patterns of material equations for gyrotropic media %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2002 %P 35-40 %N 3 %U http://geodesic.mathdoc.fr/item/UZERU_2002_3_a6/ %G ru %F UZERU_2002_3_a6
A. G. Galumian; H. M. Arakelian. Mathematical comparison of two well-known patterns of material equations for gyrotropic media. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2002), pp. 35-40. http://geodesic.mathdoc.fr/item/UZERU_2002_3_a6/
[1] F. I. Fedorov, Teoriya girotropii, Nauka i tekhnika, Minsk, 1976
[2] V. M. Agranovich, V. L. Ginzburg, Kristallooptika s uchetom prostranstvennoi dispersii i teoriya eksitonov, Nauka, M., 1979
[3] P. I. Lizorkin, Kurs differentsialnykh i integralnykh uravnenii s dopolnitelnymi glavami analiza, Nauka, M., 1981, 384 pp. | MR
[4] M. A. Novikov, A. A. Khyshov, Optika i spektroskopiya, 87 (1993), 416
[5] M. A. Novikov, G. V. Gelikonov, Optika i spektroskopiya, 75 (1993), 854
[6] M. V. Marmazeev, M. I. Ryazanov, ZhETF, 112 (1997), 1557