Elementary classification of quasi-Boolean algebras
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2002), pp. 12-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

An algebra is called a quasi-Boolean algebra if it satisfies hyperidentities of the variety of Boolean algebras. Elementary characterization is proven for quasi-Boolean algebras.
Keywords: Boolean algebras, hyperidentities.
@article{UZERU_2002_3_a2,
     author = {L. M. Budaghian},
     title = {Elementary classification of {quasi-Boolean} algebras},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {12--19},
     publisher = {mathdoc},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2002_3_a2/}
}
TY  - JOUR
AU  - L. M. Budaghian
TI  - Elementary classification of quasi-Boolean algebras
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2002
SP  - 12
EP  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2002_3_a2/
LA  - ru
ID  - UZERU_2002_3_a2
ER  - 
%0 Journal Article
%A L. M. Budaghian
%T Elementary classification of quasi-Boolean algebras
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2002
%P 12-19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2002_3_a2/
%G ru
%F UZERU_2002_3_a2
L. M. Budaghian. Elementary classification of quasi-Boolean algebras. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2002), pp. 12-19. http://geodesic.mathdoc.fr/item/UZERU_2002_3_a2/

[1] Yu. L. Ershov, Algebra i logika, 3:3 (1964), 17–38 | MR | Zbl

[2] A. Tarski, “Arithmetical classes and types of Boolean algebras”, Bull. Am. Math. Soc., 55 (1949), 63

[3] Yu. L. Ershov, Problemy razreshimosti i konstruktivnye modeli, Nauka, M., 1990

[4] S. S. Goncharov, Schëtnye bulevy algebry i razreshimost, Sibirskaya shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | MR | Zbl

[5] A. Cherch, Vvedenie v matematicheskuyu logiku, v. 1, IL, M., 1961

[6] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR | Zbl

[7] W. Taylor, “Hyperidentities and hypervarieties”, Aequationes Math., 23:1 (1981), 30–49 | DOI | MR | Zbl

[8] Yu. M. Movsisyan, Sverkhtozhdestva i sverkhmnogoobraziya v algebrakh, Izd-vo EGU, Erevan, 1990 | MR | Zbl

[9] Yu. M. Movsisyan, Vvedenie v teoriyu algebr so sverkhtozhdestvami, Izd. Erevanskogo univ., Erevan, 1986 | MR | Zbl

[10] Yu. M. Movsisyan, “Sverkhtozhdestva bulevykh algebr”, Izv. AN. Ser. matem., 56 (1992), 654–672 | MR | Zbl

[11] Yu. M. Movsisyan, “Hyperidentitties in algebras and varieties”, Uspekhi Mat. Nauk., 53:1 (1998), 61–114 (in Russian) | DOI | MR | Zbl

[12] Yu. M. Movsisyan, “Algebry so sverkhtozhdestvami mnogoobraziya bulevykh algebr”, Izv. AN. Ser. matem., 60:6 (1996), 127–168 | DOI | MR | Zbl