An electron energy spectrum and wave functions in the field of asymmetric quantum well with arbitrary shape of the bottom
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2002), pp. 58-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new method for consideration of an electron stationary motion in the field of an arbitrary one-dimensional potential. It is shown that for a case of an electron infinite motion, the problem of determination of wave functions can be represented as Cauchy problem for the one-dimensional Schrodinger equation. For the case of finite motion the equation determining the energy spectrum is found. It is proved, when the spectrum of bound states is know, the problem of building the wave functions of the discrete spectrum can be formulated as Cauchy problem for wave equation as well.
Keywords: One-dimensional Schrodinger equation, Cauchy problem.
@article{UZERU_2002_2_a3,
     author = {D. M. Sedrakian and A. Zh. Khachatrian},
     title = {An electron energy spectrum and wave functions in the field of asymmetric quantum well with arbitrary shape of the bottom},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {58--67},
     publisher = {mathdoc},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2002_2_a3/}
}
TY  - JOUR
AU  - D. M. Sedrakian
AU  - A. Zh. Khachatrian
TI  - An electron energy spectrum and wave functions in the field of asymmetric quantum well with arbitrary shape of the bottom
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2002
SP  - 58
EP  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2002_2_a3/
LA  - ru
ID  - UZERU_2002_2_a3
ER  - 
%0 Journal Article
%A D. M. Sedrakian
%A A. Zh. Khachatrian
%T An electron energy spectrum and wave functions in the field of asymmetric quantum well with arbitrary shape of the bottom
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2002
%P 58-67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2002_2_a3/
%G ru
%F UZERU_2002_2_a3
D. M. Sedrakian; A. Zh. Khachatrian. An electron energy spectrum and wave functions in the field of asymmetric quantum well with arbitrary shape of the bottom. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2002), pp. 58-67. http://geodesic.mathdoc.fr/item/UZERU_2002_2_a3/

[1] D. I. Blokhintsev, Osnovy kvantovoi mekhaniki, Nauka, M., 1983

[2] G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures, Les Ulis, France, 1990

[3] E. L. Ivchenko, G. E. Pikus, Superlattices and Other Heterostructures, Springer Series in Solid-State Sciences, 110, Springer, Berlin, 1997 | DOI | Zbl

[4] G. D. Senders, C. J. Stanton, Phys. Rev. B, 48 (1993), 11067 | DOI

[5] J. M. Rorison, Phys. Rev. B, 50 (1994), 8008 | DOI

[6] A. N. Dmitriev, ZhETF, 95 (1989), 243

[7] N. L. Chuprikov, FTP, 26 (1992), 2040

[8] X. D. Zhao, N. Yamamoto, K. Taniguchi, Superlattices and Microstructures, 23:7 (1998), 1309 | DOI

[9] A. Zh. Muradyan, FTP, 41 (1999), 1317

[10] T. Osontchan, V. W. L. Chin, T. L. Tansley, J. Appl. Phys., 80 (1996), 5342 | DOI

[11] A. G. Petrov, A. Ya. Shik, Semiconductors, 31 (1996), 567 | DOI

[12] I. V. Klyatskin, Metod pogruzheniya v teorii voln, Nauka, M., 1983 | MR

[13] V. V. Babikov, UFN, 92 (1967), 3 | DOI | MR

[14] V. I. Arnold, Dopolnitelnye glavy teorii obyknovennykh uravnenii, Nauka, M., 1978 | MR

[15] R. Erdos, R. C. Herndon, Adv. Phys., 31 (1982) | DOI | Zbl

[16] M. Buttiker, Phys. Rev. B, 27 (1983), 6178 | DOI

[17] D. M. Sedrakyan, A. Zh. Khachatryan, DAN NAN Armenii, 98 (1998), 301

[18] D. M. Sedrakian, A. Zh. Khachatrian, Phys. Rev. Lett., A 265 (2000), 294 | DOI

[19] D. M. Sedrakyan, A. Zh. Khachatryan, Izv. NAN Armenii, 2001, no. 32, 62