Criteria of compact convex sets finite dimensionality
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2002), pp. 115-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a compact convex subset of a locally convex $X$ space, $ E_n A,~n\geq1,$ be a set on $n$-extremaly points of the $A$ set. In the present note criteria of the $A$ set's finite dimensionality are formulated and proved in terms of the $E_n A$ sets.
Keywords: Locally convex $X$ space, set on $n$-extremaly points.
@article{UZERU_2002_1_a6,
     author = {G. A. Baghdasarova},
     title = {Criteria of compact convex sets finite dimensionality},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {115--117},
     publisher = {mathdoc},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2002_1_a6/}
}
TY  - JOUR
AU  - G. A. Baghdasarova
TI  - Criteria of compact convex sets finite dimensionality
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2002
SP  - 115
EP  - 117
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2002_1_a6/
LA  - ru
ID  - UZERU_2002_1_a6
ER  - 
%0 Journal Article
%A G. A. Baghdasarova
%T Criteria of compact convex sets finite dimensionality
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2002
%P 115-117
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2002_1_a6/
%G ru
%F UZERU_2002_1_a6
G. A. Baghdasarova. Criteria of compact convex sets finite dimensionality. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2002), pp. 115-117. http://geodesic.mathdoc.fr/item/UZERU_2002_1_a6/

[1] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR | Zbl

[2] G. A. Bagdasarova, “O konechnomernosti kompaktnykh vypuklykh podmnozhestv lokalno vypuklogo prostranstva”, Materialy konf. po prikl. i promysh. mat. (1–6 dekabrya, 2001), Ioshkar-Ola

[3] E. A. Danielyan, G. S. Movsisyan, K. R. Tatalyan, DAN Arm. SSR, 92:2 (1991), 69–75 | MR

[4] E. A. Danielyan, G. S. Movsisyan, “Zamechanie k teoreme Kreina-Milmana”, Veroyatnost i optimizatsiya, v. 1, Izd-vo EGU, Er., 1991, 20–24