Criteria of compact convex sets finite dimensionality
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2002), pp. 115-117
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $A$ be a compact convex subset of a locally convex $X$ space, $ E_n A,~n\geq1,$ be a set on $n$-extremaly points of the $A$ set. In the present note criteria of the $A$ set's finite dimensionality are formulated and proved in terms of the $E_n A$ sets.
Keywords:
Locally convex $X$ space, set on $n$-extremaly points.
@article{UZERU_2002_1_a6,
author = {G. A. Baghdasarova},
title = {Criteria of compact convex sets finite dimensionality},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {115--117},
year = {2002},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_2002_1_a6/}
}
TY - JOUR AU - G. A. Baghdasarova TI - Criteria of compact convex sets finite dimensionality JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2002 SP - 115 EP - 117 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZERU_2002_1_a6/ LA - ru ID - UZERU_2002_1_a6 ER -
G. A. Baghdasarova. Criteria of compact convex sets finite dimensionality. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2002), pp. 115-117. http://geodesic.mathdoc.fr/item/UZERU_2002_1_a6/
[1] Rudin U., Funktsionalnyi analiz, Mir, M., 1975 | MR | Zbl
[2] G. A. Bagdasarova, “O konechnomernosti kompaktnykh vypuklykh podmnozhestv lokalno vypuklogo prostranstva”, Materialy konf. po prikl. i promysh. mat. (1–6 dekabrya, 2001), Ioshkar-Ola
[3] E. A. Danielyan, G. S. Movsisyan, K. R. Tatalyan, DAN Arm. SSR, 92:2 (1991), 69–75 | MR
[4] E. A. Danielyan, G. S. Movsisyan, “Zamechanie k teoreme Kreina-Milmana”, Veroyatnost i optimizatsiya, v. 1, Izd-vo EGU, Er., 1991, 20–24