Boundary problems for high order degenerate quasilinear equations
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2002), pp. 24-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider boundary problems for high order quasilinear evolution equations, that are degenerate on boundary in two directions with different weights. It is proved that there exists a solution in special weighted functional spaces and the solution is unique.
Keywords: Weighted functional spaces, boundary problems.
@article{UZERU_2002_1_a3,
     author = {A. V. Tsutsulyan},
     title = {Boundary problems for high order degenerate quasilinear equations},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {24--33},
     year = {2002},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2002_1_a3/}
}
TY  - JOUR
AU  - A. V. Tsutsulyan
TI  - Boundary problems for high order degenerate quasilinear equations
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2002
SP  - 24
EP  - 33
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZERU_2002_1_a3/
LA  - ru
ID  - UZERU_2002_1_a3
ER  - 
%0 Journal Article
%A A. V. Tsutsulyan
%T Boundary problems for high order degenerate quasilinear equations
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2002
%P 24-33
%N 1
%U http://geodesic.mathdoc.fr/item/UZERU_2002_1_a3/
%G ru
%F UZERU_2002_1_a3
A. V. Tsutsulyan. Boundary problems for high order degenerate quasilinear equations. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2002), pp. 24-33. http://geodesic.mathdoc.fr/item/UZERU_2002_1_a3/

[1] G. S. Akopyan, R. L. Shakhbagyan, Izv. NAN Armenii. Matematika, 31:3 (1996), 5–29 | MR | Zbl

[2] L. D. Kudryavtsev, “Ob ekvivalentnykh normakh v vesovykh prostranstvakh”, Tr. MIAN, 170, 1984, 161–190 | MR | Zbl

[3] Yu. A. Dubinskii, Russian Math. Surveys, 23:1 (1968), 45–90 | DOI

[4] S. M. Nikolskii, P. I. Lizorkin, N. V. Miroshin, “Vesovye funktsionalnye prostranstva i ikh prilozheniya k issledovaniyu kraevykh zadach dlya vyrozhdayuschikhsya ellipticheskikh uravnenii”, Izv. vuzov. Matem., 1988, no. 8, 4–30 | MR | Zbl

[5] L. Tenoyan, Izv. NAN Armenii. Matematika, 34:5 (1999), 48–56 | MR