Boundary problems for high order degenerate quasilinear equations
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2002), pp. 24-33
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we consider boundary problems for high order quasilinear evolution equations, that are degenerate on boundary in two directions with different weights. It is proved that there exists a solution in special weighted functional spaces and the solution is unique.
Keywords:
Weighted functional spaces, boundary problems.
@article{UZERU_2002_1_a3,
author = {A. V. Tsutsulyan},
title = {Boundary problems for high order degenerate quasilinear equations},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {24--33},
year = {2002},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_2002_1_a3/}
}
TY - JOUR AU - A. V. Tsutsulyan TI - Boundary problems for high order degenerate quasilinear equations JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2002 SP - 24 EP - 33 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZERU_2002_1_a3/ LA - ru ID - UZERU_2002_1_a3 ER -
A. V. Tsutsulyan. Boundary problems for high order degenerate quasilinear equations. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2002), pp. 24-33. http://geodesic.mathdoc.fr/item/UZERU_2002_1_a3/
[1] G. S. Akopyan, R. L. Shakhbagyan, Izv. NAN Armenii. Matematika, 31:3 (1996), 5–29 | MR | Zbl
[2] L. D. Kudryavtsev, “Ob ekvivalentnykh normakh v vesovykh prostranstvakh”, Tr. MIAN, 170, 1984, 161–190 | MR | Zbl
[3] Yu. A. Dubinskii, Russian Math. Surveys, 23:1 (1968), 45–90 | DOI
[4] S. M. Nikolskii, P. I. Lizorkin, N. V. Miroshin, “Vesovye funktsionalnye prostranstva i ikh prilozheniya k issledovaniyu kraevykh zadach dlya vyrozhdayuschikhsya ellipticheskikh uravnenii”, Izv. vuzov. Matem., 1988, no. 8, 4–30 | MR | Zbl
[5] L. Tenoyan, Izv. NAN Armenii. Matematika, 34:5 (1999), 48–56 | MR