Он а biorthogonal system of Munts functions
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2002), pp. 15-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

Munts quazipolinomial orthogonal systems from the $\left\{x^{\gamma_k}\right\}$ and $\left\{e^{-\gamma_k x}\right\}$ ($\gamma_k$ are real numbers) have been for the first time derived in an integral representation by H.V. Badalian [1, 2]. In the case of $\left\{e^{-\gamma_k x}\right\}$ they are considered in the article as (2) which remains without change in a more general case for multiple $\gamma_k$. In this connection the importance of developing a two power sequences based biorthogonal system is that together with the sequence $\left\{e^{-\gamma_k x}\right\}$ it creates a possibility of free selection another sequence $\left\{e^{-\lambda_k x}\right\}$ simplifying the application of functions representation apparatus.
Keywords: Quazipolinomial orthogonal systems.
@article{UZERU_2002_1_a2,
     author = {J. A. Babayan},
     title = {{\CYRO}{\cyrn} {\cyra}  biorthogonal system of {Munts} functions},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {15--23},
     publisher = {mathdoc},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2002_1_a2/}
}
TY  - JOUR
AU  - J. A. Babayan
TI  - Он а  biorthogonal system of Munts functions
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2002
SP  - 15
EP  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2002_1_a2/
LA  - ru
ID  - UZERU_2002_1_a2
ER  - 
%0 Journal Article
%A J. A. Babayan
%T Он а  biorthogonal system of Munts functions
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2002
%P 15-23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2002_1_a2/
%G ru
%F UZERU_2002_1_a2
J. A. Babayan. Он а  biorthogonal system of Munts functions. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2002), pp. 15-23. http://geodesic.mathdoc.fr/item/UZERU_2002_1_a2/

[1] G. V. Badalyan, Izv. AN Arm. SSR, VIII:5 (1955), 1—28 ; IX:1 (1956), 1–32 | MR | MR | Zbl

[2] G. V. Badalyan, Kvazistepennoi ryad i kvazianaliticheskie klassy funktsii, Nauka, M., 1972 | MR