On boundary condition by diffraction of harmonic wave on the infinite inclusion
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2001), pp. 149-152.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the given article the jump type boundary condition is proved, which was considered in a boundary problem discussed in [1], connectrd with a harmonic wave diffraction on the half-infinite inclusion.
Keywords: jump type boundary condition, half-infinite inclusion.
@article{UZERU_2001_3_a8,
     author = {I. M. Karakhanyan},
     title = {On boundary condition by diffraction of harmonic wave on the infinite inclusion},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {149--152},
     publisher = {mathdoc},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2001_3_a8/}
}
TY  - JOUR
AU  - I. M. Karakhanyan
TI  - On boundary condition by diffraction of harmonic wave on the infinite inclusion
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2001
SP  - 149
EP  - 152
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2001_3_a8/
LA  - ru
ID  - UZERU_2001_3_a8
ER  - 
%0 Journal Article
%A I. M. Karakhanyan
%T On boundary condition by diffraction of harmonic wave on the infinite inclusion
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2001
%P 149-152
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2001_3_a8/
%G ru
%F UZERU_2001_3_a8
I. M. Karakhanyan. On boundary condition by diffraction of harmonic wave on the infinite inclusion. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2001), pp. 149-152. http://geodesic.mathdoc.fr/item/UZERU_2001_3_a8/

[1] V. S. Sarkisyan, I. N. Karakhanyan, Uchenye zapiski EGU, 2001, no. 2, 32–39

[2] B. Nobl, Metod Vinera–Khopfa, Mir, M., 1962, 279 pp. | MR

[3] V. A. Babeshko, Obobschennyi metod faktorizatsii v prostranstvennykh dinamicheskikh smeshannykh zadachakh teorii uprugosti, Nauka, M., 1984, 256 pp. | MR | Zbl

[4] V. S. Sarkisyan, Kontaktnye zadachi dlya poluploskostei i polos s uprugimi nakladkami, Izd-vo EGU, Er., 1983, 259 pp.

[5] V. T. Grinchenko, V. V. Meleshko, Garmonicheskie kolebaniya i volny v uprugikh telakh, Kiev, 1981, 284 pp. | MR | Zbl

[6] R. Feinman, Z. Leiton, M. Sends, Elektrichestvo i magnetizm, Feinmanovskie lektsii po fizike, V, Mir, M., 1966 | MR

[7] L. M. Brekhovskikh, Volny v sloistykh sredakh, Izd-vo AN SSSR, Moskva, 1957 | MR | Zbl

[8] Kh. Khan, Teoriya uprugosti. Osnovy lineinoi teorii i ee primeneniya, Mir, M., 1988, 344 pp. | MR