Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2001_2_a6, author = {P. S. Gevorgyan}, title = {Equivariant generalization of {Freudenthal{\textquoteright}s} theorem. {Equivariant} $n$- mobility}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {137--140}, publisher = {mathdoc}, number = {2}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/UZERU_2001_2_a6/} }
TY - JOUR AU - P. S. Gevorgyan TI - Equivariant generalization of Freudenthal’s theorem. Equivariant $n$- mobility JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2001 SP - 137 EP - 140 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2001_2_a6/ LA - ru ID - UZERU_2001_2_a6 ER -
%0 Journal Article %A P. S. Gevorgyan %T Equivariant generalization of Freudenthal’s theorem. Equivariant $n$- mobility %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2001 %P 137-140 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2001_2_a6/ %G ru %F UZERU_2001_2_a6
P. S. Gevorgyan. Equivariant generalization of Freudenthal’s theorem. Equivariant $n$- mobility. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2001), pp. 137-140. http://geodesic.mathdoc.fr/item/UZERU_2001_2_a6/