Equivariant generalization of Freudenthal’s theorem. Equivariant $n$- mobility
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2001), pp. 137-140

Voir la notice de l'article provenant de la source Math-Net.Ru

In the given paper the equivariant analogue of Freudenthal’s theorem in finite $G$-group is proved, which allows to generalize some results attained by Bogaty on $n$-mobility of topological distance.
Keywords: equivariant analogue of Freudenthal’s theorem.
@article{UZERU_2001_2_a6,
     author = {P. S. Gevorgyan},
     title = {Equivariant generalization of {Freudenthal{\textquoteright}s} theorem. {Equivariant} $n$- mobility},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {137--140},
     publisher = {mathdoc},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2001_2_a6/}
}
TY  - JOUR
AU  - P. S. Gevorgyan
TI  - Equivariant generalization of Freudenthal’s theorem. Equivariant $n$- mobility
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2001
SP  - 137
EP  - 140
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2001_2_a6/
LA  - ru
ID  - UZERU_2001_2_a6
ER  - 
%0 Journal Article
%A P. S. Gevorgyan
%T Equivariant generalization of Freudenthal’s theorem. Equivariant $n$- mobility
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2001
%P 137-140
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2001_2_a6/
%G ru
%F UZERU_2001_2_a6
P. S. Gevorgyan. Equivariant generalization of Freudenthal’s theorem. Equivariant $n$- mobility. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2001), pp. 137-140. http://geodesic.mathdoc.fr/item/UZERU_2001_2_a6/