Equivariant generalization of Freudenthal’s theorem. Equivariant $n$- mobility
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2001), pp. 137-140
Voir la notice de l'article provenant de la source Math-Net.Ru
In the given paper the equivariant analogue of Freudenthal’s theorem in finite $G$-group is proved, which allows to generalize some results attained by Bogaty on $n$-mobility of topological distance.
Keywords:
equivariant analogue of Freudenthal’s theorem.
@article{UZERU_2001_2_a6,
author = {P. S. Gevorgyan},
title = {Equivariant generalization of {Freudenthal{\textquoteright}s} theorem. {Equivariant} $n$- mobility},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {137--140},
publisher = {mathdoc},
number = {2},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_2001_2_a6/}
}
TY - JOUR AU - P. S. Gevorgyan TI - Equivariant generalization of Freudenthal’s theorem. Equivariant $n$- mobility JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2001 SP - 137 EP - 140 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2001_2_a6/ LA - ru ID - UZERU_2001_2_a6 ER -
%0 Journal Article %A P. S. Gevorgyan %T Equivariant generalization of Freudenthal’s theorem. Equivariant $n$- mobility %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2001 %P 137-140 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2001_2_a6/ %G ru %F UZERU_2001_2_a6
P. S. Gevorgyan. Equivariant generalization of Freudenthal’s theorem. Equivariant $n$- mobility. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2001), pp. 137-140. http://geodesic.mathdoc.fr/item/UZERU_2001_2_a6/