On factorization in the problem of diffraction of harmonic wave on elastic half infinitive inclusion
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2001), pp. 32-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the factorization of stress strain state of elastic space including half infinitive inclusion. Supposing that elastic inclusion is too thin the problem is reduced to the solution of boundary problem of harmonic wave diffraction on the half infinitive interval. Using the method of Wiener–Hopf and circulant method the boundary problem is reduced to the Wiener–Hopf matrix equation, which is completely solved. This solution allows to get analytical solution of the boundary problem
Keywords: boundary problem, Wiener–Hopf matrix equation.
@article{UZERU_2001_2_a5,
     author = {V. S. Sarkisyan and I. M. Karakhanyan},
     title = {On factorization in the problem of diffraction of harmonic wave on elastic half infinitive inclusion},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {32--39},
     publisher = {mathdoc},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2001_2_a5/}
}
TY  - JOUR
AU  - V. S. Sarkisyan
AU  - I. M. Karakhanyan
TI  - On factorization in the problem of diffraction of harmonic wave on elastic half infinitive inclusion
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2001
SP  - 32
EP  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2001_2_a5/
LA  - ru
ID  - UZERU_2001_2_a5
ER  - 
%0 Journal Article
%A V. S. Sarkisyan
%A I. M. Karakhanyan
%T On factorization in the problem of diffraction of harmonic wave on elastic half infinitive inclusion
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2001
%P 32-39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2001_2_a5/
%G ru
%F UZERU_2001_2_a5
V. S. Sarkisyan; I. M. Karakhanyan. On factorization in the problem of diffraction of harmonic wave on elastic half infinitive inclusion. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2001), pp. 32-39. http://geodesic.mathdoc.fr/item/UZERU_2001_2_a5/

[1] I. I. Vorovich, V. M. Aleksandrov, V. A. Babeshko, Neklassicheskie smeshannye zadachi teorii uprugosti, Nauka, M., 1974 | MR | Zbl

[2] V. S. Sarkisyan, Kontaktnye zadachi dlya poluploskostei i polos s uprugimi nakladkami, Izd-vo EGU, Er., 1983, 259 pp.

[3] I. I. Vorovich, V. A. Babeshko, Dinamicheskie smeshannye zadachi teorii uprugosti dlya neklassicheskikh oblastei, Nauka, M., 1979 | MR | Zbl

[4] G. A. Morar, Metod razryvnykh reshenii v mekhanike deformiruemykh tel, Shtiintsa, Kishinev, 1984

[5] V. A. Babeshko, E. V. Glushkov, Zh. F. Zinchenko, Dinamika neodnorodnykh lineino-uprugikh sred, Nauka, M., 1984

[6] V. A. Babeshko, Obobschennyi metod faktorizatsii v prostranstvennykh dinamicheskikh smeshannykh zadachakh teorii uprugosti, Nauka, M., 1984, 256 pp. | MR | Zbl

[7] I. I.Vorovich, V. A. Babeshko, Dinamicheskie smeshannye zadachi teorii uprugosti dlya neklassicheskikh oblastei, Nauka, M., 1979 | MR | Zbl

[8] F. D. Gakhov, Kraevye zadachi, Fizmatgiz, M., 1958 | MR | Zbl

[9] M. G. Krein, Uspekhi matem. nauk, 13:5 (1955), 1—150

[10] B. Nobl, Metod Vinera–Khopfa, Mir, M., 1962, 279 pp. | MR

[11] G. N. Chebotarev, Tr. vsesoyuznogo matematicheskogo s'ezda. Tom I, 1956, 111 pp. | Zbl

[12] G. S. Litvinchuk, I. M. Spitkovskii, Factorization of Measurable Matrix Functions, Akademie Verlag, Berlin, 1987 | DOI | MR | Zbl

[13] A. G. Kamalyan, DAN Armenii, 93:3 (1992), 99–104 | MR

[14] G. Bremerman, Raspredeleniya, kompleksnye peremennye i preobrazovaniya Fure, Mir, M., 1968 | MR | Zbl