Stability of systems with retardation in the case of small integral perturbations
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2001), pp. 27-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the problem of stability of nonlinear differential equations systems with retardation when small integral perturbations effect the system in finite interval of time. Sufficient conditions are obtained under which such systems are stable according to the acting force.
Keywords: nonlinear differential equations systems, finite interval of time.
@article{UZERU_2001_2_a4,
     author = {S. G. Shahinyan},
     title = {Stability of systems with retardation in the case of small integral perturbations},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {27--31},
     publisher = {mathdoc},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2001_2_a4/}
}
TY  - JOUR
AU  - S. G. Shahinyan
TI  - Stability of systems with retardation in the case of small integral perturbations
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2001
SP  - 27
EP  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2001_2_a4/
LA  - ru
ID  - UZERU_2001_2_a4
ER  - 
%0 Journal Article
%A S. G. Shahinyan
%T Stability of systems with retardation in the case of small integral perturbations
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2001
%P 27-31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2001_2_a4/
%G ru
%F UZERU_2001_2_a4
S. G. Shahinyan. Stability of systems with retardation in the case of small integral perturbations. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2001), pp. 27-31. http://geodesic.mathdoc.fr/item/UZERU_2001_2_a4/

[1] L. E. Elsgolts, Vvedenie v teoriyu differentsialnykh uravnenii s otklonyayuschimsya argumentom, Nauka, M., 1964 | MR | Zbl

[2] E. A. Barbashin, N. N. Krasovskii, “O suschestvovanii funktsii Lyapunova v sluchae asimptoticheskoi ustoichivosti v tselom”, Prikl. mat. i mekhanika, 18:3 (1954), 345–350 | MR | Zbl

[3] N. N. Krasovskii, “O primenenii vtorogo metoda A.M. Lyapunova dlya uravnenii s zapazdyvaniem po vremeni”, PMM, 20:3 (1956), 315–327 | MR

[4] N. N. Krasovskii, Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959, 98 | MR

[5] M. S. Gabrielyan, S. G. Shaginyan, “O postroenii funktsii Lyapunova”, Uchenye zapiski EGU, 1987, no. 1, 27–32 | MR | Zbl