Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2001_2_a4, author = {S. G. Shahinyan}, title = {Stability of systems with retardation in the case of small integral perturbations}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {27--31}, publisher = {mathdoc}, number = {2}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/UZERU_2001_2_a4/} }
TY - JOUR AU - S. G. Shahinyan TI - Stability of systems with retardation in the case of small integral perturbations JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2001 SP - 27 EP - 31 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2001_2_a4/ LA - ru ID - UZERU_2001_2_a4 ER -
%0 Journal Article %A S. G. Shahinyan %T Stability of systems with retardation in the case of small integral perturbations %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2001 %P 27-31 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2001_2_a4/ %G ru %F UZERU_2001_2_a4
S. G. Shahinyan. Stability of systems with retardation in the case of small integral perturbations. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2001), pp. 27-31. http://geodesic.mathdoc.fr/item/UZERU_2001_2_a4/
[1] L. E. Elsgolts, Vvedenie v teoriyu differentsialnykh uravnenii s otklonyayuschimsya argumentom, Nauka, M., 1964 | MR | Zbl
[2] E. A. Barbashin, N. N. Krasovskii, “O suschestvovanii funktsii Lyapunova v sluchae asimptoticheskoi ustoichivosti v tselom”, Prikl. mat. i mekhanika, 18:3 (1954), 345–350 | MR | Zbl
[3] N. N. Krasovskii, “O primenenii vtorogo metoda A.M. Lyapunova dlya uravnenii s zapazdyvaniem po vremeni”, PMM, 20:3 (1956), 315–327 | MR
[4] N. N. Krasovskii, Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959, 98 | MR
[5] M. S. Gabrielyan, S. G. Shaginyan, “O postroenii funktsii Lyapunova”, Uchenye zapiski EGU, 1987, no. 1, 27–32 | MR | Zbl