Floke--Liapunov's theorem for Dirac's two-parameter system with periodical coefficients
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2001), pp. 14-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work matriciant, matrix of monodromy are defined, their properties are considered and Floke–Liapunov's theorem is proved for Dirac's two-parameter system with periodical coefficients.
Mots-clés : matriciant, matrix of monodromy
Keywords: Floke–Liapunov's theorem.
@article{UZERU_2001_2_a2,
     author = {G. H. Sahakyan},
     title = {Floke--Liapunov's theorem for {Dirac's} two-parameter system with periodical coefficients},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {14--21},
     publisher = {mathdoc},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2001_2_a2/}
}
TY  - JOUR
AU  - G. H. Sahakyan
TI  - Floke--Liapunov's theorem for Dirac's two-parameter system with periodical coefficients
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2001
SP  - 14
EP  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2001_2_a2/
LA  - ru
ID  - UZERU_2001_2_a2
ER  - 
%0 Journal Article
%A G. H. Sahakyan
%T Floke--Liapunov's theorem for Dirac's two-parameter system with periodical coefficients
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2001
%P 14-21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2001_2_a2/
%G ru
%F UZERU_2001_2_a2
G. H. Sahakyan. Floke--Liapunov's theorem for Dirac's two-parameter system with periodical coefficients. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2001), pp. 14-21. http://geodesic.mathdoc.fr/item/UZERU_2001_2_a2/

[1] F. V. Atkinson, Multiparameter eigenvalue problems, v. 1, Acad. Press, New York, 1972 | MR | Zbl

[2] P. J. Browne, J. Differential Equations, 38 (1972), 553–568 | MR | Zbl

[3] P. J. Browne, J. Math. Anal. Appl., 60 (1977), 259–273 | DOI | MR | Zbl

[4] P. J. Browne, “Multiparameter problems: The last decade”, Lect. Notes Math., 964 (1982), 95–109 | DOI | MR | Zbl

[5] B. D. Sleeman, “Spectral theory and asymp. diff. equations”, Dep. Math. Univ. Scotland, 1974, 81–94 | MR | Zbl

[6] B. D. Sleeman, “Multi-parameter eigenvalue problems and $k$-linear operators”, Lecture Notes in Math., 280 (1972), 347–353 | DOI | MR | Zbl

[7] P. J. Browne, B. D. Sleeman, Proc. Edinburg Math. Soc., 3 (1986), 343–348 | DOI | MR

[8] by B. P. Rynne “The asymptotic distribution of the eigenvalues of multiparameter Sturm–Liouville systems. II”, Proc. Edinburg Math. Soc., 37:2 (1994), 301–316 | DOI | MR | Zbl

[9] H. Volkmer, Proc. Roy. Soc. Edinburg, 39:1 (1996), 119–132 | MR | Zbl

[10] P. A. Binding, P. J. Browne, Results Math., 1–2 (1997), 1–13 | DOI | MR | Zbl

[11] I. Ts. Gokhberg, M. G. Krein, Teoriya volterrovykh operatorov v gilbertovom prostranstve i ee prilozheniya, Nauka, M., 1967 | MR

[12] B. M. Levitan, I. G. Sargsyan, Operatory Shturma–Liuvillya i Diraka, Nauka, M., 1988 | MR

[13] V. A. Yakubovich, V. M. Starzhinskii, Lineinye differentsialnye uravneniya s periodicheskimi koeffitsientami, Nauka, M., 1972 | MR | Zbl