Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2001_2_a2, author = {G. H. Sahakyan}, title = {Floke--Liapunov's theorem for {Dirac's} two-parameter system with periodical coefficients}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {14--21}, publisher = {mathdoc}, number = {2}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/UZERU_2001_2_a2/} }
TY - JOUR AU - G. H. Sahakyan TI - Floke--Liapunov's theorem for Dirac's two-parameter system with periodical coefficients JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2001 SP - 14 EP - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2001_2_a2/ LA - ru ID - UZERU_2001_2_a2 ER -
%0 Journal Article %A G. H. Sahakyan %T Floke--Liapunov's theorem for Dirac's two-parameter system with periodical coefficients %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2001 %P 14-21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2001_2_a2/ %G ru %F UZERU_2001_2_a2
G. H. Sahakyan. Floke--Liapunov's theorem for Dirac's two-parameter system with periodical coefficients. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2001), pp. 14-21. http://geodesic.mathdoc.fr/item/UZERU_2001_2_a2/
[1] F. V. Atkinson, Multiparameter eigenvalue problems, v. 1, Acad. Press, New York, 1972 | MR | Zbl
[2] P. J. Browne, J. Differential Equations, 38 (1972), 553–568 | MR | Zbl
[3] P. J. Browne, J. Math. Anal. Appl., 60 (1977), 259–273 | DOI | MR | Zbl
[4] P. J. Browne, “Multiparameter problems: The last decade”, Lect. Notes Math., 964 (1982), 95–109 | DOI | MR | Zbl
[5] B. D. Sleeman, “Spectral theory and asymp. diff. equations”, Dep. Math. Univ. Scotland, 1974, 81–94 | MR | Zbl
[6] B. D. Sleeman, “Multi-parameter eigenvalue problems and $k$-linear operators”, Lecture Notes in Math., 280 (1972), 347–353 | DOI | MR | Zbl
[7] P. J. Browne, B. D. Sleeman, Proc. Edinburg Math. Soc., 3 (1986), 343–348 | DOI | MR
[8] by B. P. Rynne “The asymptotic distribution of the eigenvalues of multiparameter Sturm–Liouville systems. II”, Proc. Edinburg Math. Soc., 37:2 (1994), 301–316 | DOI | MR | Zbl
[9] H. Volkmer, Proc. Roy. Soc. Edinburg, 39:1 (1996), 119–132 | MR | Zbl
[10] P. A. Binding, P. J. Browne, Results Math., 1–2 (1997), 1–13 | DOI | MR | Zbl
[11] I. Ts. Gokhberg, M. G. Krein, Teoriya volterrovykh operatorov v gilbertovom prostranstve i ee prilozheniya, Nauka, M., 1967 | MR
[12] B. M. Levitan, I. G. Sargsyan, Operatory Shturma–Liuvillya i Diraka, Nauka, M., 1988 | MR
[13] V. A. Yakubovich, V. M. Starzhinskii, Lineinye differentsialnye uravneniya s periodicheskimi koeffitsientami, Nauka, M., 1972 | MR | Zbl