On equivalent slowly varying functions
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2001), pp. 3-8
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $0$ For an upward convex slowly varying function $L(t)>0$ an equivalent slowly varying function $L_1(t)$ has been constructed that is convex, infinitely differentiable, and that coincides with $L(t)>0$ on a beforehand given numerical sequence $\{t_n\}$.
Keywords:
slowly varying function.
@article{UZERU_2001_2_a0,
author = {I. E. Danielyan},
title = {On equivalent slowly varying functions},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {3--8},
year = {2001},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_2001_2_a0/}
}
I. E. Danielyan. On equivalent slowly varying functions. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2001), pp. 3-8. http://geodesic.mathdoc.fr/item/UZERU_2001_2_a0/
[1] D. D. Adamovic, “Sur quelques proprie’te’s des fonctions a’ croissance lente de Karamata, I, II”, Matcmaticki Vesnik, 1966, no. 3, 123–136,161–172 | MR | Zbl
[2] E. Seneta, Pravilno menyayuschiesya funktsii, Nauka, M., 1985 | MR | Zbl
[3] I. E. Danielyan , G. V. Mikaelyan, “Novoe predstavlenie medlenno menyayuscheisya funktsii”, Uchenye zapiski EGU, 2001, no. 1
[4] B. Gelbaum, Dzh. Olmsted, Kontrprimery v analize, Mir, M., 1967 | MR | Zbl
[5] R. M. Martirosyan, Dopolnitelnye glavy matematicheskogo analiza, Izd-vo EGU, Er., 1983, 296 pp.