On the representation of functions by series of Legandre polynomials in weighted $L_\mu^q [-1, 1]$ spaces
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2001), pp. 136-138
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we construct the weighted $L_\mu^q[-1, 1], q \in[1, 4/3] \cup [4, +\infty)$ and Legandre series $\sum\limits_{k=1}^\infty c_p P_k(x) $, which is universal in $L_\mu^q [-1, 1]$.
Keywords:
functions by series of Legandre polynomials.
@article{UZERU_2001_1_a5,
author = {M. G. Grigoryan and A. S. Sarkisyan},
title = {On the representation of functions by series of {Legandre} polynomials in weighted $L_\mu^q [-1, 1]$ spaces},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {136--138},
publisher = {mathdoc},
number = {1},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_2001_1_a5/}
}
TY - JOUR AU - M. G. Grigoryan AU - A. S. Sarkisyan TI - On the representation of functions by series of Legandre polynomials in weighted $L_\mu^q [-1, 1]$ spaces JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2001 SP - 136 EP - 138 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2001_1_a5/ LA - ru ID - UZERU_2001_1_a5 ER -
%0 Journal Article %A M. G. Grigoryan %A A. S. Sarkisyan %T On the representation of functions by series of Legandre polynomials in weighted $L_\mu^q [-1, 1]$ spaces %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2001 %P 136-138 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2001_1_a5/ %G ru %F UZERU_2001_1_a5
M. G. Grigoryan; A. S. Sarkisyan. On the representation of functions by series of Legandre polynomials in weighted $L_\mu^q [-1, 1]$ spaces. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2001), pp. 136-138. http://geodesic.mathdoc.fr/item/UZERU_2001_1_a5/