Einstein representation of tensor-scalar theory of gravitation
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2001), pp. 58-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper considerations on conformal transformations of tensor-scalar theory are represented. It is shown that under certain conditions conformal transformed theory of Jordan–Brans–Dicke is equivalent to Einstein theory with a minimally bounded scalar field source.
Keywords: conformal transformed theory of Jordan–Brans–Dicke.
@article{UZERU_2001_1_a4,
     author = {G. G. Arutyunyan},
     title = {Einstein representation of tensor-scalar theory of gravitation},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {58--63},
     publisher = {mathdoc},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2001_1_a4/}
}
TY  - JOUR
AU  - G. G. Arutyunyan
TI  - Einstein representation of tensor-scalar theory of gravitation
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2001
SP  - 58
EP  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2001_1_a4/
LA  - ru
ID  - UZERU_2001_1_a4
ER  - 
%0 Journal Article
%A G. G. Arutyunyan
%T Einstein representation of tensor-scalar theory of gravitation
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2001
%P 58-63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2001_1_a4/
%G ru
%F UZERU_2001_1_a4
G. G. Arutyunyan. Einstein representation of tensor-scalar theory of gravitation. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2001), pp. 58-63. http://geodesic.mathdoc.fr/item/UZERU_2001_1_a4/

[1] P. Jordan, Schwercraft und Weltall, Braunschweig, 1955 | MR

[2] C. Brans, R. H. Dicke, “Mach's principle and a relativistic theory of gravitation”, Phys. Rev., 124 (1961), 925 | DOI | MR | Zbl

[3] G. N. Shikin, Osnovy teorii solitonov v obschei teorii otnositelnosti, URSS, M., 1995

[4] J. D. Bekenshtein, Phys. Rev., D5 (1972), 1239, 2403

[5] V. N. Melnikov, Problemy teorii gravitatsii i elementarnykh chastits, v. 11, Energoatomizdat, M., 1980