A new representation of slowly varying functions
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2001), pp. 47-52
Voir la notice de l'article provenant de la source Math-Net.Ru
For a slowly varying function $L(t)$ a new integral representation is obtained: $$L(t)=\eta(t)\int\limits_{t_0}^t b(x)d\ln x, t \geq t_0>0,$$ where $\eta(t)$ is measurable on $[t_0, +\infty), b(t)$ is continuous on $[t_0, + \infty)$ and $\lim\limits_{t \rightarrow + \infty} (b(t) / L(t))= 0$. This representation allows to generalize D.D. Adamovich’s classical result on equivalent slowly varying functions and to extend the statement of A. A. Goldberg theorem.
Keywords:
slowly varying function, Goldberg theorem.
@article{UZERU_2001_1_a2,
author = {E. A. Danielyan and G. V. Mikaelyan},
title = {A new representation of slowly varying functions},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {47--52},
publisher = {mathdoc},
number = {1},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_2001_1_a2/}
}
TY - JOUR AU - E. A. Danielyan AU - G. V. Mikaelyan TI - A new representation of slowly varying functions JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2001 SP - 47 EP - 52 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2001_1_a2/ LA - ru ID - UZERU_2001_1_a2 ER -
%0 Journal Article %A E. A. Danielyan %A G. V. Mikaelyan %T A new representation of slowly varying functions %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2001 %P 47-52 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2001_1_a2/ %G ru %F UZERU_2001_1_a2
E. A. Danielyan; G. V. Mikaelyan. A new representation of slowly varying functions. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2001), pp. 47-52. http://geodesic.mathdoc.fr/item/UZERU_2001_1_a2/