A new representation of slowly varying functions
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2001), pp. 47-52

Voir la notice de l'article provenant de la source Math-Net.Ru

For a slowly varying function $L(t)$ a new integral representation is obtained: $$L(t)=\eta(t)\int\limits_{t_0}^t b(x)d\ln x, t \geq t_0>0,$$ where $\eta(t)$ is measurable on $[t_0, +\infty), b(t)$ is continuous on $[t_0, + \infty)$ and $\lim\limits_{t \rightarrow + \infty} (b(t) / L(t))= 0$. This representation allows to generalize D.D. Adamovich’s classical result on equivalent slowly varying functions and to extend the statement of A. A. Goldberg theorem.
Keywords: slowly varying function, Goldberg theorem.
@article{UZERU_2001_1_a2,
     author = {E. A. Danielyan and G. V. Mikaelyan},
     title = {A new representation of slowly varying functions},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {47--52},
     publisher = {mathdoc},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2001_1_a2/}
}
TY  - JOUR
AU  - E. A. Danielyan
AU  - G. V. Mikaelyan
TI  - A new representation of slowly varying functions
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2001
SP  - 47
EP  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2001_1_a2/
LA  - ru
ID  - UZERU_2001_1_a2
ER  - 
%0 Journal Article
%A E. A. Danielyan
%A G. V. Mikaelyan
%T A new representation of slowly varying functions
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2001
%P 47-52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2001_1_a2/
%G ru
%F UZERU_2001_1_a2
E. A. Danielyan; G. V. Mikaelyan. A new representation of slowly varying functions. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2001), pp. 47-52. http://geodesic.mathdoc.fr/item/UZERU_2001_1_a2/