Tendencies of the $M_r|G_r|1|\infty$ model’s study
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2001), pp. 4-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is a short review of a queuing model $M_r|G_r|1|\infty$. First of all, methods for analysis of the $M_r|G_r|1|\infty$ model’s characteristics with classic disciplines such as pre-emptive, head-of-the-line and alternating priorities are presented. A transition to analysis of parametric disciplines and further to class of conservative disciplines is justified and implemented. Special attention is paid to conditions for existence of stationary distributions and preservation laws. Particularly, two new preservation laws for stationary distributions of queue lengths are established. The range of optimization problems for the class of conservative disciplines and some of its subclasses are presented. Directions of asymptotic analysis under different traffic intensities are described. A new result for stationary waiting time distributions in terms of Laplace–Stilties transform is formulated in case of Kleinrock’s parametric discipline.
Keywords: Queuing model $M_r|G_r|1|\infty$.
@article{UZERU_2001_1_a0,
     author = {E. A. Danielyan and Kh. Z. Khachikyan},
     title = {Tendencies of the $M_r|G_r|1|\infty$ model{\textquoteright}s study},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {4--22},
     publisher = {mathdoc},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2001_1_a0/}
}
TY  - JOUR
AU  - E. A. Danielyan
AU  - Kh. Z. Khachikyan
TI  - Tendencies of the $M_r|G_r|1|\infty$ model’s study
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2001
SP  - 4
EP  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2001_1_a0/
LA  - ru
ID  - UZERU_2001_1_a0
ER  - 
%0 Journal Article
%A E. A. Danielyan
%A Kh. Z. Khachikyan
%T Tendencies of the $M_r|G_r|1|\infty$ model’s study
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2001
%P 4-22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2001_1_a0/
%G ru
%F UZERU_2001_1_a0
E. A. Danielyan; Kh. Z. Khachikyan. Tendencies of the $M_r|G_r|1|\infty$ model’s study. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2001), pp. 4-22. http://geodesic.mathdoc.fr/item/UZERU_2001_1_a0/

[1] B. V. Gnedenko, E. A. Danielyan, B. N. Dimitrov i dr., Prioritetnye sistemy obsluzhivaniya, Izd-vo MGU, M., 1973

[2] N. Dzheisuol, Ocheredi s prioritetami, ed. V. V. Kalashnikov, Mir, M., 1973 (Per. s angl.) | MR

[3] G. P. Basharina (red.), Veroyatnostnye zadachi v strukturno-slozhnykh sistemakh kommutatsii, Nauka, M., 1969

[4] G. P. Klimov, G. K. Mishkoi, Prioritetnye sistemy obsluzhivaniya s orientatsiei, Izd-vo Mosk. un-ta, M., 1979 | MR

[5] V. G. Ushakov, Issledovanie prioritetnykh sistem obsluzhivaniya s erlangovskimi vkhodyaschimi potokami, Diss. na soiskanie uch. st. kand. fiz.-mat. nauk, Izd-vo MGU, M., 1978

[6] G. P. Klimov, Stokhasticheskie sistemy obsluzhivaniya, Nauka, M., 1966 | MR | Zbl

[7] Dac Cong. Tang, Collective marks and waiting-time problems, Amsterdam Univ. Press, Amsterdam, 1995, 118 pp. | MR | Zbl

[8] C. M. Brodi, I. A. Pogosyan, Vlozhennye stokhasticheskie protsessy v teorii massovogo obsluzhivaniya, Naukova dumka, Kiev, 1973, 128 pp. | MR

[9] M. M. Dzhrbashyan, Integralnye preobrazovanii i predstavleniya funktsii v kompleksnoi oblasti, M., 1966 | MR | Zbl

[10] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya. V 2-kh tomakh, Mir, M., 2008 | MR

[11] A. G. Postnikov, Tauberova teoriya i ee primeneniya, Tr. Matem. in-ta im. V. A. Steklova, CXLIV, Nauka, M., 1979 | MR | Zbl

[12] I. I. Gikhman, A. V. Skorokhod, Teoriya sluchainykh protsessov, Nauka, M., 1973 | MR | Zbl

[13] O. A. Aven, Ya.V. Kogan, “Matematicheskie modeli slozhnykh vychislitelnykh sistem”, Avtomatika i telemekhanika, 1971, no. 1, 109–127 | Zbl

[14] L. Kleinrok, Vychislitelnye sistemy s ocheredyami, Mir, M., 1979

[15] O. A. Aven, Ya.V. Kogan, Upravlenie vychislitelnym protsessom v EVM, Energiya, M., 1978, 368 pp.

[16] Chzhun Kai-lai, Odnorodnye tsepi Markova, Mir, M., 1964 | MR | Zbl

[17] A. A. Borovkov, Veroyatnostnye protsessy v teorii massovogo obsluzhivaniya, Nauka, M., 1971 | MR | Zbl

[18] V. S. Korolyuk, Granichnye zadachi dlya slozhnykh puassonovskikh protsessov, Nauk. dumka, Kiev, 1975 | MR

[19] E. A. Danielyan, Matematicheskaya teoriya prioritetnykh modelei $M_r|G_r|1|\infty$, Diss. na soiskanie uch. st. dokt. fiz.-mat. nauk, Izd-vo MGU, M., 257 pp.

[20] O. I. Bronshtein, I. M. Dukhovnyi, Modeli prioritetnogo obsluzhivaniya v informatsionno-vychislitelnykh sistemakh, M. Nauka, 1976 | MR

[21] A. A. Nazarov, Upravlyaemye sistemy massovogo obsluzhivaniya i ikh optimizatsiya, TGU, Tomsk, 1984, 253 pp.

[22] G. P. Klimov, “Sistemy obsluzhivaniya s razdeleniem vremeni. I”, Teoriya veroyatnostei i ee primeneniya, 19:3 (1974), 558–576 | MR | Zbl

[23] G. P. Klimov, “Sistemy obsluzhivaniya s razdeleniem vremeni. II”, Teoriya veroyatnostei i ee primeneniya, 23:2 (1978) | MR

[24] E. A. Danielyan, G. A. Popov, “Otpimizatsiya protsessa obsluzhivaniya v odnom klassse stokhasticheskikh modelei”, Matematika, 1986, no. 5, 23–36, Izd-vo EGU, Er. | MR

[25] G. G. Oganyan, Analiz i proektirovanie intellektualnykh obuchayuschikh sistem, Diss. na soiskanie uch. st. kand. tekhn. nauk, GIUA, Er., 1999, 113 pp.

[26] E. A. Danielyan, “O periode zanyatosti obschei odnokanalnoi sistemy massovogo obsluzhivaniya”, DAN Arm. SSR, LXVI:1 (1978), 7–14 | Zbl

[27] Kh. Z. Khachikyan, G. Sedrakyan, “Ob odnom zakone sokhraneniya teorii ocheredei”, Modelirovanie, optimizatsiya, upravlenie, 2000, no. 4, 35–40, GIUA, Er.

[28] N. U. Prabhu, Stochastic Storage Processes: Queues, Insurance Risks and Dams, Springer-Verlag, NY, 1980, 147 pp. | MR | Zbl

[29] Jiunn Hsu, “A Continuation of Delay Dependent Queue Discipline”, Oper. Res., 18:4 (1970), 733–738 | DOI | MR | Zbl

[30] Yu. V. Prokhorov, “Perekhodnye yavleniya v protsessakh massovogo obsluzhivaniya”, Litovsk. mat. sb., 3:1 (1963), 199–206 | MR

[31] J. F. C. Kingman, “The single server queue in heavy traffic”, Proc. Cambridge Philos. Soc., 57 (1961), 902–904 | DOI | MR | Zbl

[32] T. A. Azlarov, J. M. Husseinov, Some Limit Theorems for a Queuing System with Absolute Priority in Heavy Traffic, Springer-Verlag, 1976 | MR

[33] G. A. Popov, “Asimptoticheskie razlozheniya periodov zanyatosti v sisteme $M_r|G_r|1|\infty$ s absolyutnym prioritetom i identichnym obsluzhivaniem zanovo”, Molodoi nauchnyi sotrudnik, 1978, no. 2, 28–32, Izd-vo EGU, Er.

[34] E. A. Danielyan, N. S. Zemlyanoi, “Klass predelnykh raspredelenii sovmestnogo statsionarnogo raspredeleniya vremen ozhidaniya nekotorykh sistem $M_r|G_r|1|\infty$ v usloviyakh kriticheskoi zagruzki”, DAN Arm. SSR, LXX:1 (1980), 3–10 | Zbl

[35] E. A. Danielyan, “Opisanie odnogo klassa predelnykh raspredelenii v odnokanalnykh prioritetnykh sistemakh”, Acta Cyb., Hungary, 1981, 105–118

[36] E. A. Danielian, “Asymptotical investigation of the virtual waiting time for priority queues in a busy-store”, Current Topics in Cybernetics and Systems, 8 (1978), 80–82, Springer-Verlag | DOI

[37] G. A. Popov, Asimptoticheskii analiz nekotorykh sistem s puassonovskimi postupleniyami v usloviyakh maloi i edinichnoi zagruzok, Diss. na soiskanie uch. st. kand. fiz.-mat. nauk, Tashkent, 1981, 121 pp.

[38] E. A. Danielyan, “K asimptotike perioda zanyatosti i vremeni ozhidaniya prioritetnykh sistem $M_r|G_r|1|\infty$ pri kriticheskoi zagruzke”, Izv. AN Arm. SSR. Matematika, 10:3 (1975), 272–287 | MR | Zbl

[39] E. A. Danielyan, “Predelnye teoremy dlya vremeni ozhidaniya odnokanalnykh prioritetnykh sistem”, DAN Arm. SSR, XXI:3 (1980), 129–135

[40] R. N Chitchyan, Predelnye teoremy v prioritetnykh modelyakh $M_r|G_r|1|\infty$ v usloviyakh kriticheskoi zagruzki, Diss. na soiskanie uch. st. kand. fiz.-mat. nauk, Vilnyus, 1982, 137 pp.

[41] V. G. Saakyan, Distsiplina sluchainogo vybora v modeli s otnositelnymi i absolyutnymi prioritetami, Diss. na soiskanie uch. st. kand. fiz.-mat. nauk, MIEM, M., 1982, 141 pp.

[42] G. A. Terzikyan, Nekotorye mnogomernye predelnye teoremy v modeli $M_r|G_r|1|\infty$ s absolyutnymi prioritetami, Diss. na soiskanie uch. st. kand. fiz.-mat. nauk, MIEM, M., 1987, 124 pp.

[43] Allush Tarek Abullkafi, Aktualnye vremena ozhidaniya v modeli $M_r|G_r|1|\infty$ s absolyutnym i otnositelnym prioritetami, Diss. na soiskanie uch. st. kand. fiz.-mat. nauk, EGU, Er., 1995, 90 pp.

[44] P. T. Khostikyan, Analiz modelei s kategorialnymi vo vremeni prioritetami, Diss. na soiskanie uch. st. kand. fiz.-mat. nauk, Tashkent, 1982, 110 pp. | Zbl

[45] S. N. Sandryan, Analiz modeli Prabkhu, Diss. na soiskanie uch. st. kand. fiz.-mat. nauk, EGU, Er., 1991, 136 pp.

[46] A. P. Simonyan, Predelnye teoremy v modeli Prabkhu pri fiksirovannykh zagruzkakh, Diss. na soiskanie uch. st. kand. fiz.-mat. nauk, EGU, Er., 1991, 119 pp.

[47] P. Billingeli, Skhodimost veroyatnostnykh mer, Nauka, M., 1977

[48] L. Kleinrok, Kommunikatsionnye seti, Nauka, M., 1975, 256 pp.

[49] E. A. Danielyan, “Ob odnoi sisteme s dinamicheskimi prioritetami”, Uchenye zapiski EGU, 1980, no. 3, 19–25 | Zbl

[50] E. A. Danielian, F. Lieze, “The analysis of a model with time dependent priorities”, Rostock Math. Kolloq., 43 (1991), 39–54, Germany | MR

[51] U. Bagchi, R.S. Sullivan, “Dynamic Non-Preemtive Queues with General, Linearily Increasing Priority Function”, Oper. Res., 35 (1985), 1278–1298 | DOI | MR

[52] E. A. Danielyan, S. G. Sardaryan, “Srednie statsionarnye vremena ozhidaniya v lineinoi parametricheskoi modeli”, Matem. voprosy kibern. i vychisl. tekhn., XV (1985), 194–198, Er.

[53] A. Netterman, A. Adiri, “A Dynamic Priority Queues with General Concave Priority Function”, Oper. Res., 27 (1979), 1088–1100 | DOI | MR | Zbl