About the maximum sum of casual number of independent casual quantity
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2000), pp. 24-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{UZERU_2000_2_a3,
     author = {A. Z. Arakelyan and E. A. Danielyan},
     title = {About the maximum sum of casual number of independent casual quantity},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {24--35},
     publisher = {mathdoc},
     number = {2},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2000_2_a3/}
}
TY  - JOUR
AU  - A. Z. Arakelyan
AU  - E. A. Danielyan
TI  - About the maximum sum of casual number of independent casual quantity
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2000
SP  - 24
EP  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2000_2_a3/
LA  - ru
ID  - UZERU_2000_2_a3
ER  - 
%0 Journal Article
%A A. Z. Arakelyan
%A E. A. Danielyan
%T About the maximum sum of casual number of independent casual quantity
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2000
%P 24-35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2000_2_a3/
%G ru
%F UZERU_2000_2_a3
A. Z. Arakelyan; E. A. Danielyan. About the maximum sum of casual number of independent casual quantity. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2000), pp. 24-35. http://geodesic.mathdoc.fr/item/UZERU_2000_2_a3/

[1] V. Feller, v 2 t., v. 2, Mir, M., 1984, 751 pp. | MR | Zbl

[2] E. Seneta, Pravilno izmenyayuschiesya funktsii, Nauka, M., 1985, 141 pp. | MR | Zbl

[3] R. Greenwood, “Asymptotics of randomly stopped sequences with independent increments”, Ann. Prob., 1973, no. 1, 317–321 | DOI | MR | Zbl

[4] P. Greenwood, I. Monroe, “Random stopping preserves regular variation of process distributions”, Ann. Probab., 5 (1977), 42–51 | DOI | MR | Zbl

[5] S. G. Tkachuk, S. Zulmatov, “Obobschenie odnoi teoremy A.V. Nagaeva o bolshikh ukloneniyakh dlya veroyat-nostei popadaniya v interval”, Mat. analiz i teoriya veroyatn., Fan, Tashkent, 1988

[6] S. Zulmatov, S. G. Tkachuk, “Additivnoe svoistvo veroyatnostei bolshikh uklonenii summ nezavisimykh sluchainykh velichin”, DAN Uz. SSR, 1987, no. 4, 15–16 | MR | Zbl

[7] G. M. Fikhtengolts, Kurs differentsialnogo i integralnogo ischisleniya, v. 2, 7-e izd., Nauka, M., 1969, 800 pp.

[8] V. V. Petrov, Predelnye teoremy dlya summ nezavisimykh sluchainykh peremennykh, Nauka, M., 1987, 317 pp.