The infinflc non-irivial solution -- set construction for a system of differential equations with constant coefficients for Diriehlct’s problem in circle
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1997), pp. 11-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{UZERU_1997_1_a1,
     author = {G. A. Sarkissian},
     title = {The infinflc non-irivial solution -- set construction for a system of differential equations with constant coefficients for {Diriehlct{\textquoteright}s} problem in circle},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {11--17},
     publisher = {mathdoc},
     number = {1},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1997_1_a1/}
}
TY  - JOUR
AU  - G. A. Sarkissian
TI  - The infinflc non-irivial solution -- set construction for a system of differential equations with constant coefficients for Diriehlct’s problem in circle
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1997
SP  - 11
EP  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_1997_1_a1/
LA  - ru
ID  - UZERU_1997_1_a1
ER  - 
%0 Journal Article
%A G. A. Sarkissian
%T The infinflc non-irivial solution -- set construction for a system of differential equations with constant coefficients for Diriehlct’s problem in circle
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1997
%P 11-17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_1997_1_a1/
%G ru
%F UZERU_1997_1_a1
G. A. Sarkissian. The infinflc non-irivial solution -- set construction for a system of differential equations with constant coefficients for Diriehlct’s problem in circle. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1997), pp. 11-17. http://geodesic.mathdoc.fr/item/UZERU_1997_1_a1/

[1] R. A. Aleksandryan, Tr. MMO, 9, 1960, 445 | MR | Zbl

[2] A. V. Bitsadze, Nekotorye klassy uravnenii v chastnykh proizvolnykh, Nauka, M., 1981 | MR | Zbl

[3] N. E. Tovmasyan, “Novye postanovki i issledovaniya pervoi, vtoroi i tretei kraevykh zadach dlya silno svyazannykh ellipticheskikh sistem dvukh differentsialnykh uravnenii vtorogo poryadka s postoyannymi koeffitsientami”, Izv. AN Arm. SSR. Matem., 3:6 (1968), 497–521 | MR

[4] T. I. Zelenyak, “O smeshannoi zadache dlya odnogo uravneniya, ne razreshennogo otnositelno starshei proizvodnoi po vremeni”, DAN SSSR, 154:6 (1964)

[5] G. V. Virabyan, DAN SSSR, 10:8 (1969)

[6] Nguen Tkhya Khop, “O normalnoi razreshimosti zadachi Dirikhle dlya sistemy ellipticheskogo tipa”, DAN SSSR, 167 (1966), 982–984

[7] V. P. Burskii, “O narushenii edinstvennosti resheniya zadachi Dirikhle dlya ellipticheskikh sistem v kruge”, Matem. zametki, 48:3 (1990), 32–36 | MR

[8] G. A. Sargsyan, “Postroenie dvukratno polnoi sovokupnosti sobstvennykh funktsii dlya odnogo differentsialnogo kvadratichnogo operatornogo puchka v sluchae kruga”, Uch. zapiski EGU, 1994, no. 1(180)

[9] G. A. Sargsyan, “Novyi sposob postroeniya polnoi sistemy sobstvennykh funktsii zadachi Dirikhle dlya uravneniya kolebaniya struny v sluchae kruga”, Uch. zapiski EGU, 1994, no. 2(181)