Weighted integral representations of functions in polydisk
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1996), pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{UZERU_1996_1_a0,
     author = {A. I. Petrosyan},
     title = {Weighted integral representations of functions in polydisk},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--9},
     publisher = {mathdoc},
     number = {1},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1996_1_a0/}
}
TY  - JOUR
AU  - A. I. Petrosyan
TI  - Weighted integral representations of functions in polydisk
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1996
SP  - 3
EP  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_1996_1_a0/
LA  - ru
ID  - UZERU_1996_1_a0
ER  - 
%0 Journal Article
%A A. I. Petrosyan
%T Weighted integral representations of functions in polydisk
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1996
%P 3-9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_1996_1_a0/
%G ru
%F UZERU_1996_1_a0
A. I. Petrosyan. Weighted integral representations of functions in polydisk. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1996), pp. 3-9. http://geodesic.mathdoc.fr/item/UZERU_1996_1_a0/

[1] M. M. Dzhrbashyan, “K probleme predstavimosti analiticheskikh funktsii”, Soobsch. in-ta matem. i mekh. AN Arm. SSR, 1948, no. 2, 3–40

[2] M. M. Dzhrbashyan, “Vesovye integralnye predstavleniya gladkikh i golomorfnykh funktsii v edinichnom kruge i v kompleksnoi ploskosti”, Izv. NAN Armenii. Matematika, 28:4 (1993), 1–28 | MR | Zbl

[3] B. V. Shabat, Vvedenie v kompleksnyi analiz, Ch. 2, Nauka, M., 1985 | MR | Zbl

[4] Ph. Charpentier, “Formules explicites pour les solutions minimales del equation $\overline{\partial}u=f$ dans la boule et dans le polydisque de $C^n$”, Ann. Inst. Fourier, 30:4 (1980), 121–154 | DOI | MR | Zbl