Apriori estimation for one class of regular operators. The Dirichlet type problem
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1995), pp. 15-18
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{UZERU_1995_1_a1,
author = {A. G. Bagdasarian},
title = {Apriori estimation for one class of regular operators. {The} {Dirichlet} type problem},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {15--18},
year = {1995},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_1995_1_a1/}
}
TY - JOUR AU - A. G. Bagdasarian TI - Apriori estimation for one class of regular operators. The Dirichlet type problem JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 1995 SP - 15 EP - 18 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZERU_1995_1_a1/ LA - ru ID - UZERU_1995_1_a1 ER -
%0 Journal Article %A A. G. Bagdasarian %T Apriori estimation for one class of regular operators. The Dirichlet type problem %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 1995 %P 15-18 %N 1 %U http://geodesic.mathdoc.fr/item/UZERU_1995_1_a1/ %G ru %F UZERU_1995_1_a1
A. G. Bagdasarian. Apriori estimation for one class of regular operators. The Dirichlet type problem. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1995), pp. 15-18. http://geodesic.mathdoc.fr/item/UZERU_1995_1_a1/
[1] S. M. Nikolskii, “Pervaya kraevaya zadacha dlya odnogo lineinogo uravneniya”, Dokl. AN SSSR, 146:4 (1962), 767–769
[2] A. G. Bagdasaryan, “Ob interpolyatsii i sledakh funktsii iz nekotorykh anizotropnykh funktsionalnykh prostranstv”, Izv. AN Arm. SSR, 23:4 (1988), 353–365 | MR
[3] V. P. Mikhailov, “O povedenii na beskonechnosti odnogo klassa mnogochlenov”, Tr. MIAN, 91, 1967, 59–81