Apriori estimation for one class of regular operators. The Dirichlet type problem
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1995), pp. 15-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{UZERU_1995_1_a1,
     author = {A. G. Bagdasarian},
     title = {Apriori estimation for one class of regular operators. {The} {Dirichlet} type problem},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {15--18},
     publisher = {mathdoc},
     number = {1},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1995_1_a1/}
}
TY  - JOUR
AU  - A. G. Bagdasarian
TI  - Apriori estimation for one class of regular operators. The Dirichlet type problem
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1995
SP  - 15
EP  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_1995_1_a1/
LA  - ru
ID  - UZERU_1995_1_a1
ER  - 
%0 Journal Article
%A A. G. Bagdasarian
%T Apriori estimation for one class of regular operators. The Dirichlet type problem
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1995
%P 15-18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_1995_1_a1/
%G ru
%F UZERU_1995_1_a1
A. G. Bagdasarian. Apriori estimation for one class of regular operators. The Dirichlet type problem. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1995), pp. 15-18. http://geodesic.mathdoc.fr/item/UZERU_1995_1_a1/

[1] S. M. Nikolskii, “Pervaya kraevaya zadacha dlya odnogo lineinogo uravneniya”, Dokl. AN SSSR, 146:4 (1962), 767–769

[2] A. G. Bagdasaryan, “Ob interpolyatsii i sledakh funktsii iz nekotorykh anizotropnykh funktsionalnykh prostranstv”, Izv. AN Arm. SSR, 23:4 (1988), 353–365 | MR

[3] V. P. Mikhailov, “O povedenii na beskonechnosti odnogo klassa mnogochlenov”, Tr. MIAN, 91, 1967, 59–81