Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_1994_1_a2, author = {P. S. Gevorgyan}, title = {On a peculiarity of $G$-movable compacts}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {26--31}, publisher = {mathdoc}, number = {1}, year = {1994}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/UZERU_1994_1_a2/} }
P. S. Gevorgyan. On a peculiarity of $G$-movable compacts. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1994), pp. 26-31. http://geodesic.mathdoc.fr/item/UZERU_1994_1_a2/
[1] K. Borsuk, “On Movable Compacta”, Fund Math., 66:1 (1969), 137–146 | DOI | MR | Zbl
[2] S. Mardesic, J. Segal, “Movable compacta and ANR-systems”, Bull. Acad. Pol. Sci., 18:11 (1970), 649–654 | MR | Zbl
[3] J. Segal, “Movable Shapes”, Topology Conf., Lect. Notes Math., 375, Springer, Berlin, 1974, 236–241 | DOI | MR
[4] A. P. Shostak, “Sheipy v klassakh kompaktnosti: retrakty, ekstenzory, podvizhnost”, Uch. zap. Latv. un-ta, 236 (1975), 108–128 | Zbl
[5] P. S. Gevorkyan, “O $G$-podvizhnosti $G$-prostranstv”, UMN, 43 (1988), 177–178 | MR
[6] P. S. Gevorkyan, “Mazhoranty dlya $G$-podvizhnykh kompaktov”, UMN, 44 (1989), 191–192 | MR | Zbl
[7] Yu. M. Smirnov, “Teoriya sheipov dlya $G$-nap”, UMN, 40:2 (1985), 151–165 | MR | Zbl