Abelian and Tauberian theorems for the convolution type transformations
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1992), pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we have receved analogies of Abelian and Tauberian theorems for the generalization Laplace transformations, namely the following transformation: $$f(s)=\int\limits^{\infty}_0 \omega(st, \gamma)d\alpha(t),$$ where the sequence is constructed $\gamma=\{\gamma_u\},$ $$\gamma_0=0\leq\gamma_1\leq\gamma_2\leq\ldots \leq\ldots,~\sum{1/ \gamma_u }=\sum{1/ \gamma_u^2}\leq\infty,$$ the function $\omega(t, \gamma)$ summarized the nucleus of Laplace transformation.
@article{UZERU_1992_1_a0,
     author = {A.-R. Isam},
     title = {Abelian and {Tauberian} theorems for the convolution type transformations},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--14},
     publisher = {mathdoc},
     number = {1},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1992_1_a0/}
}
TY  - JOUR
AU  - A.-R. Isam
TI  - Abelian and Tauberian theorems for the convolution type transformations
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1992
SP  - 3
EP  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_1992_1_a0/
LA  - ru
ID  - UZERU_1992_1_a0
ER  - 
%0 Journal Article
%A A.-R. Isam
%T Abelian and Tauberian theorems for the convolution type transformations
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1992
%P 3-14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_1992_1_a0/
%G ru
%F UZERU_1992_1_a0
A.-R. Isam. Abelian and Tauberian theorems for the convolution type transformations. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1992), pp. 3-14. http://geodesic.mathdoc.fr/item/UZERU_1992_1_a0/

[1] D. V. Widder, The Laplase transform., 2 ed., Prinston, 1946, 412 pp. | MR

[2] G. V. Badalyan, “Primenenie preobrazovaniya tipa svertki k teorii obobschennoi problemy momentov Stiltesa”, Izv. AN SSSR. Ser. matem., 31 (1967), 491–530 | Zbl

[3] G. V. Badalyan, Zh. A. Badalyan, “Ob obschei skhodimosti odnogo preobrazovaniya tipa svertki”, Mezhvuz. sb. Armenii, Matematika, 1991, no. 7 | Zbl