@article{UZERU_1991_2_a5,
author = {A.-R. Isam},
title = {Generalized regular monotony of {Mittag-Leffler} type quasi-full functions},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {40--52},
year = {1991},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_1991_2_a5/}
}
TY - JOUR AU - A.-R. Isam TI - Generalized regular monotony of Mittag-Leffler type quasi-full functions JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 1991 SP - 40 EP - 52 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZERU_1991_2_a5/ LA - ru ID - UZERU_1991_2_a5 ER -
A.-R. Isam. Generalized regular monotony of Mittag-Leffler type quasi-full functions. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (1991), pp. 40-52. http://geodesic.mathdoc.fr/item/UZERU_1991_2_a5/
[1] G. V. Badalyan, “Primenenie preobrazovaniya tipa svertki k teorii obobschennoi problemy momentov Stiltesa”, Izv. AN SSSR. Ser. matem., 31 (1967), 491–530 | Zbl
[2] A. Wintner, “Stratification of Cauehy’s "stable” transcendents and of Mittag-Leffler’s entiere functions”, Amer. J. Math., LXXX:1 (1958), 111–124 | DOI | MR | Zbl
[3] I. I. Khirshman, D. V. Uidder, Preobrazovanie tipa svertki, IL, M., 1958
[4] G. V. Badalyan, “O klassifikatsii i predstavlenii beskonechno differentsialnykh funktsii”, IAN SSSR (ser. matematik.),, 34:3 (1970), 584–620 | Zbl
[5] G. V. Badalyan, “$A_\gamma$-absolyutno monotonnye funktsii”, Izv. AN Arm. SSR (ser. fiz.-matem. nauk), XIV:4 (1961), 21–35 | Zbl
[6] I. Al-Abdul-Razzak, “Kvazitselye funktsii – nachalnye ponyatiya”, Mezhvuz. sbornik RA. Matematika, 1991, no. 7 | Zbl
[7] S. Mandelbroit, Primykayuschie ryady. Regulyarizatsiya posledovatelnostei. Primeneniya, IL, M., 1955 | MR | Zbl
[8] G. V. Badalyan, V. M. Edigaryan, “Obobschenie odnoi zadachi Mendeleeva”, Uch. zapiski EGU, 1988, no. 1(167), 3–10 | MR | Zbl
[9] H. Pollard, “The completely monatonic character of the Mittag-Leffler function $E_{\alpha}(-x)$”, Bull. Amer. Math. Soc., 54:2 (1948), 1115–1116 | DOI | MR | Zbl