On the minimization of a non-linear functional
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (1991), pp. 22-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of shear crack is described by the equivalent variational problem with non-linear functional. As the problem cannot be solved analytically, it becomes necessary to construct algorithms for its numericals solvation. In the article the functional’s minimization method is suggested based on the gradient sloping method with the automatic choice of the step.
@article{UZERU_1991_2_a3,
     author = {A. R. Brutian},
     title = {On the minimization of a non-linear functional},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {22--27},
     publisher = {mathdoc},
     number = {2},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1991_2_a3/}
}
TY  - JOUR
AU  - A. R. Brutian
TI  - On the minimization of a non-linear functional
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1991
SP  - 22
EP  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_1991_2_a3/
LA  - ru
ID  - UZERU_1991_2_a3
ER  - 
%0 Journal Article
%A A. R. Brutian
%T On the minimization of a non-linear functional
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1991
%P 22-27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_1991_2_a3/
%G ru
%F UZERU_1991_2_a3
A. R. Brutian. On the minimization of a non-linear functional. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (1991), pp. 22-27. http://geodesic.mathdoc.fr/item/UZERU_1991_2_a3/

[1] G. I. Eskin, Kraevye zadach dlya ellipticheskikh psevdodifferentsialnykh uravnenii, Nauka, M., 1973, 230 pp. | MR

[2] R. V. Goldshtein, A. A Spektor, “Variatsionnyi metod issledovaniya prostranstvennykh smeshannykh zadach o ploskom razreze v uprugoi srede pri nalichii proskalzyvaniya i stsepleniya ego poverkhnostei”, PMM, 47:2 (1983), 276–285 | MR

[3] A. P. Brutyan, R. P. Fedorenko, Metod chislennogo resheniya zadach o treschinakh otryva i sdviga, Preprint No 107, IPM im. M.V. Keldysha AN SSSR, M., 1984