On quazianalyticity of infinitely differentiable functions on curves
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (1991), pp. 15-21
Cet article a éte moissonné depuis la source Math-Net.Ru
In W. Rudin’s and I. Brune’s works the following problem has been solved: when $f(x)$ belongs to a certain class $C\{M, I\}$ being an analytical function, their superposition belongs to the class. In this paper it has been shown that W. Rudin’s and I. Brune’s results are true also in the case, when the demand of $\Phi(z)$ analyticity is substituted by a weaker condition. The obtained results can be used for investigation of functions of quasianalytical classes on curves.
@article{UZERU_1991_2_a2,
author = {E. E. Pivazian},
title = {On quazianalyticity of infinitely differentiable functions on curves},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {15--21},
year = {1991},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_1991_2_a2/}
}
TY - JOUR AU - E. E. Pivazian TI - On quazianalyticity of infinitely differentiable functions on curves JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 1991 SP - 15 EP - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZERU_1991_2_a2/ LA - ru ID - UZERU_1991_2_a2 ER -
E. E. Pivazian. On quazianalyticity of infinitely differentiable functions on curves. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (1991), pp. 15-21. http://geodesic.mathdoc.fr/item/UZERU_1991_2_a2/
[1] J. Hadamard, “Recherches sur les solutions fondamentales et l'intégration des équations linéaires aux dérivéés partielles”, Ann. École Norm. Super, 21 (1904), 535–556 | DOI | MR
[2] S. Mandeilbrot, Primykayuschie ryady. Regulyarizatsiya posledovatelnostei, M., 1955
[3] W. Rudin, “Division in algebras of infinitely differentiable functions”, J. of Math. and Mech., 2:5 (1962), 797–809 | MR
[4] J. Bruna, “On inverse closed algebras of infinitely differentiable functions”, Studia Mathematics, LXIX (1980) | MR | Zbl
[5] T. Bang, Om quasi-analytiske funktioner, Nyt Norclisk Forlag Univ. of Copenhagen, 1946, 101 pp. | MR