On quazianalyticity of infinitely differentiable functions on curves
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (1991), pp. 15-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

In W. Rudin’s and I. Brune’s works the following problem has been solved: when $f(x)$ belongs to a certain class $C\{M, I\}$ being an analytical function, their superposition belongs to the class. In this paper it has been shown that W. Rudin’s and I. Brune’s results are true also in the case, when the demand of $\Phi(z)$ analyticity is substituted by a weaker condition. The obtained results can be used for investigation of functions of quasianalytical classes on curves.
@article{UZERU_1991_2_a2,
     author = {E. E. Pivazian},
     title = {On quazianalyticity of infinitely differentiable functions on curves},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {15--21},
     publisher = {mathdoc},
     number = {2},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1991_2_a2/}
}
TY  - JOUR
AU  - E. E. Pivazian
TI  - On quazianalyticity of infinitely differentiable functions on curves
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1991
SP  - 15
EP  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_1991_2_a2/
LA  - ru
ID  - UZERU_1991_2_a2
ER  - 
%0 Journal Article
%A E. E. Pivazian
%T On quazianalyticity of infinitely differentiable functions on curves
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1991
%P 15-21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_1991_2_a2/
%G ru
%F UZERU_1991_2_a2
E. E. Pivazian. On quazianalyticity of infinitely differentiable functions on curves. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (1991), pp. 15-21. http://geodesic.mathdoc.fr/item/UZERU_1991_2_a2/

[1] J. Hadamard, “Recherches sur les solutions fondamentales et l'intégration des équations linéaires aux dérivéés partielles”, Ann. École Norm. Super, 21 (1904), 535–556 | DOI | MR

[2] S. Mandeilbrot, Primykayuschie ryady. Regulyarizatsiya posledovatelnostei, M., 1955

[3] W. Rudin, “Division in algebras of infinitely differentiable functions”, J. of Math. and Mech., 2:5 (1962), 797–809 | MR

[4] J. Bruna, “On inverse closed algebras of infinitely differentiable functions”, Studia Mathematics, LXIX (1980) | MR | Zbl

[5] T. Bang, Om quasi-analytiske funktioner, Nyt Norclisk Forlag Univ. of Copenhagen, 1946, 101 pp. | MR