An alternative statement for stochastic positional controlling of $m$ aim-sets
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (1991), pp. 3-10
Cet article a éte moissonné depuis la source Math-Net.Ru
The alternative statement is proved for the existence of E-equilibrium in a differential game of pursuit and evasion with a leader at $m$ aim-sets when the players choose their strategies form the class of piecewise-positional ones depending on random quantities, appearing in the course of measurement.
@article{UZERU_1991_2_a0,
author = {M. S. Gabrielyan and V. K. Stepanyan},
title = {An alternative statement for stochastic positional controlling of $m$ aim-sets},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {3--10},
year = {1991},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_1991_2_a0/}
}
TY - JOUR AU - M. S. Gabrielyan AU - V. K. Stepanyan TI - An alternative statement for stochastic positional controlling of $m$ aim-sets JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 1991 SP - 3 EP - 10 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZERU_1991_2_a0/ LA - ru ID - UZERU_1991_2_a0 ER -
%0 Journal Article %A M. S. Gabrielyan %A V. K. Stepanyan %T An alternative statement for stochastic positional controlling of $m$ aim-sets %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 1991 %P 3-10 %N 2 %U http://geodesic.mathdoc.fr/item/UZERU_1991_2_a0/ %G ru %F UZERU_1991_2_a0
M. S. Gabrielyan; V. K. Stepanyan. An alternative statement for stochastic positional controlling of $m$ aim-sets. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (1991), pp. 3-10. http://geodesic.mathdoc.fr/item/UZERU_1991_2_a0/
[1] N. N. Krasovskii, A. N. Subbotin, Pozitsionnye differentsialnye shr, Nauka, M., 1974, 456 pp. | MR
[2] M. S. Gabrielyan, Differentsialnye igry pri $m$ tselevykh mnozhestvakh, Avtoreferat na soisk. uch. st. doktora fiz.-mat. nauk, EGU, Er., 1986
[3] V. I. Arkin, V. L. Levin, “Vypuklost znachenii vektornykh integralov, teoremy izmerimogo vybora i variatsionnye zadachi”, Usp. mat. nauk, 27:3 (1972), 21–77 | MR | Zbl
[4] M. Loev, Teoriya veroyatnostei, IL, M., 1962
[5] Yu. A. Rozanov, Sluchainye protsessy. Spetsialnyi kurs, Nauka, M., 1967