An alternative statement for stochastic positional controlling of $m$ aim-sets
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (1991), pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

The alternative statement is proved for the existence of E-equilibrium in a differential game of pursuit and evasion with a leader at $m$ aim-sets when the players choose their strategies form the class of piecewise-positional ones depending on random quantities, appearing in the course of measurement.
@article{UZERU_1991_2_a0,
     author = {M. S. Gabrielyan and V. K. Stepanyan},
     title = {An alternative statement for stochastic positional controlling of $m$ aim-sets},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--10},
     publisher = {mathdoc},
     number = {2},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1991_2_a0/}
}
TY  - JOUR
AU  - M. S. Gabrielyan
AU  - V. K. Stepanyan
TI  - An alternative statement for stochastic positional controlling of $m$ aim-sets
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1991
SP  - 3
EP  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_1991_2_a0/
LA  - ru
ID  - UZERU_1991_2_a0
ER  - 
%0 Journal Article
%A M. S. Gabrielyan
%A V. K. Stepanyan
%T An alternative statement for stochastic positional controlling of $m$ aim-sets
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1991
%P 3-10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_1991_2_a0/
%G ru
%F UZERU_1991_2_a0
M. S. Gabrielyan; V. K. Stepanyan. An alternative statement for stochastic positional controlling of $m$ aim-sets. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (1991), pp. 3-10. http://geodesic.mathdoc.fr/item/UZERU_1991_2_a0/

[1] N. N. Krasovskii, A. N. Subbotin, Pozitsionnye differentsialnye shr, Nauka, M., 1974, 456 pp. | MR

[2] M. S. Gabrielyan, Differentsialnye igry pri $m$ tselevykh mnozhestvakh, Avtoreferat na soisk. uch. st. doktora fiz.-mat. nauk, EGU, Er., 1986

[3] V. I. Arkin, V. L. Levin, “Vypuklost znachenii vektornykh integralov, teoremy izmerimogo vybora i variatsionnye zadachi”, Usp. mat. nauk, 27:3 (1972), 21–77 | MR | Zbl

[4] M. Loev, Teoriya veroyatnostei, IL, M., 1962

[5] Yu. A. Rozanov, Sluchainye protsessy. Spetsialnyi kurs, Nauka, M., 1967