The geometrical properties of optimal trajectories in the game of simple pursue on plane in the presence of obstacle
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1991), pp. 32-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

The game problem of pursue on plane in the presence of obstacle is considered. The optimal trajectories of this system are either geodesic lines or their envelopes (singular paths). An algorithm of constructing the domain on which all singular paths end is suggested. It is shown that in the two-dimensional case this domain is always non-empty. The existence of singular dispersal surface is proved. In several examples the domains of unconditional envelope of obstacle by pursuer are constructed (irrespective of evader).
@article{UZERU_1991_1_a4,
     author = {N. V. Hovakimyan},
     title = {The geometrical properties of optimal trajectories in the game of simple pursue on plane in the presence of obstacle},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {32--39},
     publisher = {mathdoc},
     number = {1},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1991_1_a4/}
}
TY  - JOUR
AU  - N. V. Hovakimyan
TI  - The geometrical properties of optimal trajectories in the game of simple pursue on plane in the presence of obstacle
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1991
SP  - 32
EP  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_1991_1_a4/
LA  - ru
ID  - UZERU_1991_1_a4
ER  - 
%0 Journal Article
%A N. V. Hovakimyan
%T The geometrical properties of optimal trajectories in the game of simple pursue on plane in the presence of obstacle
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1991
%P 32-39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_1991_1_a4/
%G ru
%F UZERU_1991_1_a4
N. V. Hovakimyan. The geometrical properties of optimal trajectories in the game of simple pursue on plane in the presence of obstacle. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1991), pp. 32-39. http://geodesic.mathdoc.fr/item/UZERU_1991_1_a4/

[1] R. Aizeks, Differentsialnye igry, Mir, M., 1967 | MR | Zbl

[2] L. S. Vishnevetskii, A. A. Melikyan, “Optimalnoe presledovanie na ploskosti pri nalichii prepyatstviya”, Prikladnaya matematika i mekhanika, 46:4 (1982), 613–620 | MR

[3] G. K. Pozharitskii, “Zadacha Aizeksa ob ogibanii ostrova”, Prikladnaya matematika i mekhanika, 46:5 (1982), 707–713 | MR

[4] G. Yu. Kulikova, O. A. Malafeev, L. A. Petrosyan, “Igra prostogo presledovaniya na ploskosti s prepyatstviem. I”, Dinamicheskie upravlyaemye sistemy, Izd-vo Yakutskogo universiteta, Yakutsk, 1983, 83–100

[5] G. Yu. Kulikova, O. A. Malafeev, L. A. Petrosyan, “Igra prostogo presledovaniya na ploskosti s prepyatstviem. II”, Dinamicheskie upravlyaemye sistemy, Izd-vo Yakutskogo universiteta, Yakutsk, 1986, 54–63

[6] A. A. Melikyan, N. V. Ovakimyan, “Osobye traektorii v igrovykh zadachakh prostogo sblizheniya na mnogoobraziyakh”, PMM, 65:1 (1991), 54–62 | MR | Zbl

[7] N. N. Krasovskii, A. N. Subbotin, Pozitsionnye differentsialnye shr, Nauka, M., 1974, 456 pp. | MR

[8] A. I. Subbotin, A. G. Chentsov, Optimzatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 285 pp. | MR