On some classes of continious mappings of subsets of Hilbert space. II
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1991), pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper contains some important properties of cl asses of continuous mappings of subsets of real Hilbert space $H$, introduced in [1], for construction of an infinite-dimensional algebraic topology in space $H$. The concept of topological degree for mappings from the class $K$ and the concept of $K$-infinite-dimensional homotopic groups for subsets of Hilbert space $H$ are defined.
@article{UZERU_1991_1_a0,
     author = {\'E. A. Mirzakhanyan},
     title = {On some classes of continious mappings of subsets of {Hilbert} space. {II}},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--10},
     publisher = {mathdoc},
     number = {1},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1991_1_a0/}
}
TY  - JOUR
AU  - É. A. Mirzakhanyan
TI  - On some classes of continious mappings of subsets of Hilbert space. II
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1991
SP  - 3
EP  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_1991_1_a0/
LA  - ru
ID  - UZERU_1991_1_a0
ER  - 
%0 Journal Article
%A É. A. Mirzakhanyan
%T On some classes of continious mappings of subsets of Hilbert space. II
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1991
%P 3-10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_1991_1_a0/
%G ru
%F UZERU_1991_1_a0
É. A. Mirzakhanyan. On some classes of continious mappings of subsets of Hilbert space. II. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (1991), pp. 3-10. http://geodesic.mathdoc.fr/item/UZERU_1991_1_a0/

[1] E. A. Mirzakhanyan, “O nekotorykh klassakh nepreryvnykh otobrazhenii podmnozhestv gilbertova prostranstva. I”, Uchenye zap. EGU, 1990, no. 3, 21–28 | MR | Zbl

[2] V. G. Boltyanskii, E. A. Mirzakhanyan, “Postroenie stepeni otobrazheniya v gilbertovom prostranstve”, Izv. AN Arm. SSR, ser. matem., 9:5 (1974)

[3] E. A. Mirzakhanyan, “O beskonechnomernykh analogakh teorem Borsuka o nechetnosti topologicheskoi stepeni nechetnogo otobrazheniya i o nepodvizhnoi tochke”, DAN Arm. SSR, 89:14 (1989), 15–17 | MR

[4] E. A. Mirzakhanyan, “Postroenie beskonechnomernykh gomotopicheskikh grupp”, Izv. AN Arm. SSR, ser. matem., 8:3 (1973), 212–225 | MR | Zbl

[5] E. A. Mirzakhanyan, “Vychislenie beskonechnomernykh gomotopicheskikh grupp kompaktnogo tipa edinichnoi sfery gilbertova prostranstva”, Izv. AN Arm. SSR, ser. matemat., X:2 (1975) | Zbl

[6] E. A. Mirzakhanyan, “O nekotorykh svoistvakh beskonechnomernykh gomotopicheskikh grupp podmnozhestv gilbertova prostranstva”, DAN Arm. SSR, 79:1 (1984), 15–17 | MR | Zbl

[7] E. A. Mirzakhanyan, “Ob odnom beskonechnomernom obobschenii teoremy Brauera o nepodvizhnoi tochke”, Uchenye zap. EGU, 1987, no. 1, 14–17 | MR | Zbl