On some cl asses of mappings of Hilbert space subsets
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (1990), pp. 21-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article we have defined some classes of continueous mappings of real Hilbert space subsets. These classes serve for construction of an infinite-dimensional algebraic topology in $H$. Some very important properties of these three cl asses are given in the paper.
@article{UZERU_1990_3_a3,
     author = {\'E. A. Mirzakhanyan},
     title = {On some cl asses of mappings of {Hilbert} space subsets},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {21--28},
     publisher = {mathdoc},
     number = {3},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_1990_3_a3/}
}
TY  - JOUR
AU  - É. A. Mirzakhanyan
TI  - On some cl asses of mappings of Hilbert space subsets
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 1990
SP  - 21
EP  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_1990_3_a3/
LA  - ru
ID  - UZERU_1990_3_a3
ER  - 
%0 Journal Article
%A É. A. Mirzakhanyan
%T On some cl asses of mappings of Hilbert space subsets
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 1990
%P 21-28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_1990_3_a3/
%G ru
%F UZERU_1990_3_a3
É. A. Mirzakhanyan. On some cl asses of mappings of Hilbert space subsets. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (1990), pp. 21-28. http://geodesic.mathdoc.fr/item/UZERU_1990_3_a3/

[1] V. G. Boltyanskii, “Ob odnom klasse otobrazhenii podmnozhestv gilbertova prostranstva”, Izv. AN Arm. SSR. Ser. matem., 9:2 (1974), 107–120 | MR

[2] V. G. Boltyanskii, E. A. Mirzakhanyan, “Postroenie stepeni otobrazheniya v gilbertovom prostranstve”, Izv. AN Arm.SSR. Ser. matem., 9:5 (1974)

[3] E. A. Mirzakhanyan, “Postroenie beskonechnomernykh gomotopicheskikh grupp”, Izv. AN Arm. SSR. Ser. matem., 8:3 (1973), 212–225 | MR | Zbl

[4] E. A. Mirzakhanyan, “Vychislenie beskonechnomernykh gomotopicheskikh grupp kompaktnogo tipa edinichnoi sfery gilbertova prostranstva”, Izv. AN Arm. SSR. Ser. matem., X:2 (1975) | Zbl

[5] E. A. Mirzakhanyan, “O svoistvakh odnogo klassa otobrazhenii podmnozhestv gilbertova prostranstva”, Izv. AN Arm. SSR. Ser. matem., 15:5 (1980), 349–356 | MR | Zbl

[6] E. A. Mirzakhanyan, “O nekotorykh svoistvakh beskonechnomernykh gomotopicheskikh grupp podmnozhestv gilbertova prostranstva”, DAN Arm.SSR, 79:1 (1984), 15–17 | MR | Zbl

[7] E. A. Mirzakhanyan, “O nekotorykh svoistvakh lineinykh ogranichennykh operatorov odnogo klassa otobrazhenii podmnozhestv gilbertova prostranstva”, Uch. zap. EGU, 1985, no. 3

[8] E. A. Mirzakhanyan, “O nekotorykh svoistvakh nepreryvno differentsiruemykh otobrazhenii podmnozhestv gilbertova prostranstva”, Uch. zap. EGU, 1986, no. 1 | MR

[9] E. A. Mirzakhanyan, “Ob odnoi teoreme invariantnosti oblasti gilbertova prostranstva pri $K_0$-diffeomorfizmakh”, Uch. zap. EGU, 1986, no. 2 | MR

[10] E. A. Mirzakhanyan, “Ob odnom beskonechnomernom obobschenii teoremy Brauera o nepodvizhnoi tochke”, Uch. zap. EGU, 1987, no. 1, 14–17 | MR | Zbl

[11] E. A. Mirzakhanyan, “Ob odnom beskonechnomernom obobschenii teoremy Brauera ob invariantnosti oblasti”, Tez. dokl. Bakinskoi Mezhd. top. konf. Ch. 2, 1987

[12] E. A. Mirzakhanyan, “Ob odnom beskonechnomernom obobschenii teoremy Borsuka o neogranichennoi komponente”, DAN Arm. SSR, 84:3 (1987) | Zbl

[13] E. A. Mirzakhanyan, “O beskonechnomernykh analogakh klassicheskikh teorem Borsuka o nechetnosti topologicheskoi stepeni nechetkogo otobrazheniya i o nepodvizhnoi tochke”, DAN Arm. SSR, 89:4 (1989) | MR

[14] C. Leng, Vvedenie v teoriyu differentsiruemykh banakhovykh mnogoobrazii, Mir, M., 1967